//--------------------------------------------------------------------- /// <summary> /// Adds frass for a species to the foliar LITTER pools at a site. /// Assumes that some of the N has been resorbed. /// </summary> public static void AddFrassLitter(double inputFrassBiomass, ISpecies species, ActiveSite site) { double inputDecayValue = 1.0; // Decay value is calculated for surface/soil layers (leaf/fine root), // therefore, this is just a dummy value. if (inputFrassBiomass > 0) { //SiteVars.LitterfallC[site] += defoliatedLeafBiomass * 0.47; //double frassBiomass = Math.Max(0.0, OtherData.frassdepk * defoliatedLeafBiomass); // Frass C added is a function of defoliated leaf biomass, but adjusted for the CN of litter and frass // Any C lost is due to insect metabolism double inputFrassC = inputFrassBiomass * 0.47; double inputFrassN = inputFrassC / (double)SpeciesData.LeafLitterCN[species]; double actualFrassC = inputFrassN * (double)OtherData.CNratiofrass; // the difference between input and actual is C lost to insect metabolism double actualFrassBiomass = actualFrassC / 0.47; //PlugIn.ModelCore.UI.WriteLine("AddFrass.Month={0:0}, inputfrassN={1:0.000}, inputfrassbiomass={2:0.00}, actualfrassbiomass={3:0.00} ", Main.Month, inputFrassN, inputFrassBiomass, actualFrassBiomass); SiteVars.FrassC[site] += actualFrassC; LitterLayer.PartitionResidue( actualFrassBiomass, inputDecayValue, OtherData.CNratiofrass, 0.1, OtherData.StructuralCN, LayerName.Leaf, LayerType.Surface, site); } }
//--------------------------------------------------------------------- /// <summary> /// Adds some biomass for a species to the foliar LITTER pools at a site. /// Assumes that some of the N has been resorbed. /// </summary> public static void AddResorbedFoliageLitter(double foliarBiomass, ISpecies species, ActiveSite site) { double inputDecayValue = 1.0; // Decay value is calculated for surface/soil layers (leaf/fine root), // therefore, this is just a dummy value. if (foliarBiomass > 0) { SiteVars.LitterfallC[site] += foliarBiomass * 0.47; LitterLayer.PartitionResidue( foliarBiomass, inputDecayValue, SpeciesData.LeafLitterCN[species], SpeciesData.LeafLignin[species], OtherData.StructuralCN, LayerName.Leaf, LayerType.Surface, site); } }
//--------------------------------------------------------------------- /// <summary> /// Kills fine roots and add the biomass to the Dead Fine Roots pool. /// </summary> public static void AddFineRootLitter(double abovegroundFoliarBiomass, ICohort cohort, ISpecies species, ActiveSite site) { double fineRootBiomass = CalculateFineRoot(cohort, abovegroundFoliarBiomass); double inputDecayValue = 1.0; // Decay value is calculated for surface/soil (leaf/fine root), // therefore, this is just a dummy value. if (fineRootBiomass > 0) { LitterLayer.PartitionResidue( fineRootBiomass, inputDecayValue, SpeciesData.FineRootCN[species], SpeciesData.FineRootLignin[species], OtherData.StructuralCN, LayerName.FineRoot, LayerType.Soil, site); } }
/// <summary> /// Grows all cohorts at a site for a specified number of years. /// Litter is decomposed following the Century model. /// </summary> public static ISiteCohorts Run(ActiveSite site, int years, bool isSuccessionTimeStep) { ISiteCohorts siteCohorts = SiteVars.Cohorts[site]; IEcoregion ecoregion = PlugIn.ModelCore.Ecoregion[site]; for (int y = 0; y < years; ++y) { Year = y + 1; if (Climate.Future_MonthlyData.ContainsKey(PlugIn.FutureClimateBaseYear + y + PlugIn.ModelCore.CurrentTime - years)) { ClimateRegionData.AnnualWeather[ecoregion] = Climate.Future_MonthlyData[PlugIn.FutureClimateBaseYear + y - years + PlugIn.ModelCore.CurrentTime][ecoregion.Index]; } //PlugIn.ModelCore.UI.WriteLine("PlugIn_FutureClimateBaseYear={0}, y={1}, ModelCore_CurrentTime={2}, CenturyTimeStep = {3}, SimulatedYear = {4}.", PlugIn.FutureClimateBaseYear, y, PlugIn.ModelCore.CurrentTime, years, (PlugIn.FutureClimateBaseYear + y - years + PlugIn.ModelCore.CurrentTime)); SiteVars.ResetAnnualValues(site); // Next, Grow and Decompose each month int[] months = new int[12] { 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5 }; if (OtherData.CalibrateMode) { //months = new int[12]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; This output will not match normal mode due to differences in initialization months = new int[12] { 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5 } } ; PlugIn.AnnualWaterBalance = 0; for (MonthCnt = 0; MonthCnt < 12; MonthCnt++) { // Calculate mineral N fractions based on coarse root biomass. Only need to do once per year. if (MonthCnt == 0) { AvailableN.CalculateMineralNfraction(site); } //PlugIn.ModelCore.UI.WriteLine("SiteVars.MineralN = {0:0.00}, month = {1}.", SiteVars.MineralN[site], i); Month = months[MonthCnt]; SiteVars.MonthlyAGNPPcarbon[site][Month] = 0.0; SiteVars.MonthlyBGNPPcarbon[site][Month] = 0.0; SiteVars.MonthlyNEE[site][Month] = 0.0; SiteVars.MonthlyResp[site][Month] = 0.0; SiteVars.MonthlyStreamN[site][Month] = 0.0; SiteVars.MonthlyLAI[site][Month] = 0.0; SiteVars.SourceSink[site].Carbon = 0.0; SiteVars.TotalWoodBiomass[site] = Main.ComputeWoodBiomass((ActiveSite)site); //SiteVars.LAI[site] = Century.ComputeLAI((ActiveSite)site); double ppt = ClimateRegionData.AnnualWeather[ecoregion].MonthlyPrecip[Main.Month]; double monthlyNdeposition; if (PlugIn.Parameters.AtmosNintercept != -1 && PlugIn.Parameters.AtmosNslope != -1) { monthlyNdeposition = PlugIn.Parameters.AtmosNintercept + (PlugIn.Parameters.AtmosNslope * ppt); } else { monthlyNdeposition = ClimateRegionData.AnnualWeather[ecoregion].MonthlyNDeposition[Main.Month]; } if (monthlyNdeposition < 0) { throw new System.ApplicationException("Error: Nitrogen deposition less than zero."); } ClimateRegionData.MonthlyNDeposition[ecoregion][Month] = monthlyNdeposition; ClimateRegionData.AnnualNDeposition[ecoregion] += monthlyNdeposition; SiteVars.MineralN[site] += monthlyNdeposition; //PlugIn.ModelCore.UI.WriteLine("Ndeposition={0},MineralN={1:0.00}.", monthlyNdeposition, SiteVars.MineralN[site]); double liveBiomass = (double)ComputeLivingBiomass(siteCohorts); double baseFlow, stormFlow, AET; //if(OtherData.Henne_WaterMode) // SoilWaterHenne.Run(y, Month, liveBiomass, site, out baseFlow, out stormFlow, out AET); //else SoilWater.Run(y, Month, liveBiomass, site, out baseFlow, out stormFlow, out AET); PlugIn.AnnualWaterBalance += ppt - AET; // Calculate N allocation for each cohort AvailableN.SetMineralNallocation(site); if (MonthCnt == 11) { siteCohorts.Grow(site, (y == years && isSuccessionTimeStep), true); } else { siteCohorts.Grow(site, (y == years && isSuccessionTimeStep), false); } WoodLayer.Decompose(site); LitterLayer.Decompose(site); SoilLayer.Decompose(site); // Volatilization loss as a function of the mineral N which remains after uptake by plants. // ML added a correction factor for wetlands since their denitrification rate is double that of wetlands // based on a review paper by Seitziner 2006. double volatilize = (SiteVars.MineralN[site] * PlugIn.Parameters.DenitrificationRate); //PlugIn.ModelCore.UI.WriteLine("BeforeVol. MineralN={0:0.00}.", SiteVars.MineralN[site]); SiteVars.MineralN[site] -= volatilize; SiteVars.SourceSink[site].Nitrogen += volatilize; SiteVars.Nvol[site] += volatilize; if (OtherData.Henne_WaterMode) { SoilWaterHenne.Leach(site, baseFlow, stormFlow); } else { SoilWater.Leach(site, baseFlow, stormFlow); } SiteVars.MonthlyNEE[site][Month] -= SiteVars.MonthlyAGNPPcarbon[site][Month]; SiteVars.MonthlyNEE[site][Month] -= SiteVars.MonthlyBGNPPcarbon[site][Month]; SiteVars.MonthlyNEE[site][Month] += SiteVars.SourceSink[site].Carbon; SiteVars.FineFuels[site] = (SiteVars.SurfaceStructural[site].Carbon + SiteVars.SurfaceMetabolic[site].Carbon) * 2.0; //SiteVars.FineFuels[site] = (System.Math.Min(1.0, (double) (PlugIn.ModelCore.CurrentTime - SiteVars.HarvestTime[site]) * 0.1)); } } ComputeTotalCohortCN(site, siteCohorts); return(siteCohorts); }