コード例 #1
0
        public IModelDiscreteIterative <int, int> GenerateModelDiscreteIncremental(IDataSet <int, int> training_set)
        {
            //TODO check data context
            ModelNearestNeighborList <int, int, int> model = new ModelNearestNeighborList <int, int, int>(training_set.DataContext, new FunctionDistanceHamming());
            IList <Tuple <int[], int> > training_instances = new List <Tuple <int[], int> >();

            for (int instance_index = 0; instance_index < training_set.InstanceCount; instance_index++)
            {
                training_instances.Add(new Tuple <int[], int>(training_set.GetInstanceFeatureData(instance_index), training_set.GetInstanceLabelData(instance_index)[0]));
            }
            model.Add(training_instances);
            return(model);
        }
コード例 #2
0
        public IModelDiscreteIterative <DomainType, LabelType> GenerateModelDiscrete(IDataSet <DomainType, LabelType> training_set)
        {
            ModelNearestNeighborList <DomainType, DistanceType, LabelType> model = new ModelNearestNeighborList <DomainType, DistanceType, LabelType>(
                this.DataContext,
                new List <Tuple <DomainType[], LabelType> >(this.list),
                this.distance_function,
                this.voting_system,
                this.neighbor_count);

            IList <Tuple <DomainType[], LabelType> > training_instances = new List <Tuple <DomainType[], LabelType> >();

            for (int instance_index = 0; instance_index < training_set.InstanceCount; instance_index++)
            {
                training_instances.Add(new Tuple <DomainType[], LabelType>(training_set.GetInstanceFeatureData(instance_index), training_set.GetInstanceLabelData(instance_index)[0]));
            }
            model.Add(training_instances);
            return(model);
        }