コード例 #1
0
        private void Classify_button_Click(object sender, EventArgs e)
        {
            dataGridView1.Rows.Clear();
            dataGridView1.Refresh();
            int l = Math.Min(Convert.ToInt32(imageLeftIndex.Text), Convert.ToInt32(imageRightIndex.Text));
            int r = Math.Max(Convert.ToInt32(imageLeftIndex.Text), Convert.ToInt32(imageRightIndex.Text));

            l--;
            r--;
            if (l >= 0 && r < 10000 && Convert.ToInt32(K_text.Text) <= 60000)
            {
                double accuracy = KNN.Classify(l, r, ReadingInput.testImages, ReadingInput.trainImages, Convert.ToInt32(K_text.Text));

                int index = 0;
                for (int i = 0; i <= r - l; i++)
                {
                    DataGridViewRow row = (DataGridViewRow)dataGridView1.Rows[0].Clone();
                    row.Cells[0].Value = KNN.testResults[index];
                    row.Cells[1].Value = KNN.testResults[index + 1];
                    row.Cells[2].Value = KNN.testResults[index + 2];
                    index = index + 3;
                    dataGridView1.Rows.Add(row);
                }
                accuracy_text.Text = accuracy.ToString() + "%";
                ConfusionMatrix CM = new ConfusionMatrix();
                CM.Show();
            }
        }
コード例 #2
0
        private void Classify_button_Click(object sender, EventArgs e)
        {
            int index = Convert.ToInt32(imageIndex.Text);

            index--;
            if (index >= 0 && index < 10000 && Convert.ToInt32(K_text.Text) <= 60000)
            {
                byte pred = KNN.Classify(ReadingInput.testImages[index], ReadingInput.trainImages, Convert.ToInt32(K_text.Text));
                predicion_text.Text = pred.ToString();
            }
        }
コード例 #3
0
        private void Classify_button_Click(object sender, EventArgs e)
        {
            Bitmap drawnImage = new Bitmap(pictureBox1.Image);
            Bitmap resized    = new Bitmap(drawnImage, new Size(28, 28));

            pictureBox1.Image = resized;
            byte[,] arr       = new byte[28, 28];
            for (int i = 0; i < 28; i++)
            {
                for (int j = 0; j < 28; j++)
                {
                    arr[i, j] = resized.GetPixel(j, i).R;
                }
            }

            DigitImage DI   = new DigitImage(arr, 0);
            byte       pred = KNN.Classify(DI, ReadingInput.trainImages, Convert.ToInt32(K_text.Text));

            predicion_text.Text = pred.ToString();
        }