コード例 #1
0
        /// <summary>
        /// Calculates the centroids of the clusters
        /// </summary>
        public void CalculateClusterCentroids()
        {
            //Console.WriteLine("Cluster Centroid calculation:");
            for (int j = 0; j < this.Clusters.Count; j++)
            {
                ClusterCentroid c = this.Clusters[j];
                double          l = 0.0;
                c.PixelCount    = 1;
                c.RSum          = 0;
                c.GSum          = 0;
                c.BSum          = 0;
                c.MembershipSum = 0;

                for (int i = 0; i < this.Points.Count; i++)
                {
                    ClusterPoint p = this.Points[i];
                    l                = Math.Pow(U[i, j], this.Fuzzyness);
                    c.RSum          += l * p.PixelColor.R;
                    c.GSum          += l * p.PixelColor.G;
                    c.BSum          += l * p.PixelColor.B;
                    c.MembershipSum += l;

                    if (U[i, j] == p.ClusterIndex)
                    {
                        c.PixelCount += 1;
                    }
                }

                c.PixelColor = Color.FromArgb((byte)(c.RSum / c.MembershipSum), (byte)(c.GSum / c.MembershipSum), (byte)(c.BSum / c.MembershipSum));
            }

            //update the original image
            Bitmap tempImage = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);

            for (int j = 0; j < this.Points.Count; j++)
            {
                for (int i = 0; i < this.Clusters.Count; i++)
                {
                    ClusterPoint p = this.Points[j];
                    if (U[j, i] == p.ClusterIndex)
                    {
                        tempImage.SetPixel((int)p.X, (int)p.Y, this.Clusters[i].PixelColor);
                    }
                }
            }

            processedImage = tempImage;
        }
コード例 #2
0
        /// <summary>
        /// Initialize the algorithm with points and initial clusters
        /// </summary>
        /// <param name="points">The list of Points objects</param>
        /// <param name="clusters">The list of Clusters objects</param>
        /// <param name="fuzzy">The fuzzyness factor to be used, constant</param>
        /// <param name="myImage">A working image, so that the GUI working image can be updated</param>
        /// <param name="numCluster">The number of clusters requested by the user from the GUI</param>
        public KMeansAlgorithm(List <ClusterPoint> points, List <ClusterCentroid> clusters, float fuzzy, Bitmap myImage, int numCluster)
        {
            if (points == null)
            {
                throw new ArgumentNullException("points");
            }

            if (clusters == null)
            {
                throw new ArgumentNullException("clusters");
            }


            processedImage = (Bitmap)myImage.Clone();


            this.Points        = points;
            this.Clusters      = clusters;
            this.myImageHeight = myImage.Height;
            this.myImageWidth  = myImage.Width;
            this.myImage       = new Bitmap(myImageWidth, myImageHeight, PixelFormat.Format32bppRgb);
            U = new double[this.Points.Count, this.Clusters.Count];
            this.Fuzzyness = fuzzy;

            double diff;

            // Iterate through all points to create initial U matrix
            for (int i = 0; i < this.Points.Count; i++)
            {
                ClusterPoint p   = this.Points[i];
                double       sum = 0.0;

                for (int j = 0; j < this.Clusters.Count; j++)
                {
                    ClusterCentroid c = this.Clusters[j];
                    diff    = Math.Sqrt(Math.Pow(CalculateEuclideanDistance(p, c), 2.0));
                    U[i, j] = (diff == 0) ? Eps : diff;
                    sum    += U[i, j];
                }
            }

            this.RecalculateClusterMembershipValues();
        }
コード例 #3
0
 /// <summary>
 /// Calculates Euclidean Distance distance between a point and a cluster centroid
 /// </summary>
 /// <param name="p">Point</param>
 /// <param name="c">Centroid</param>
 /// <returns>Calculated distance</returns>
 private double CalculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)
 {
     return Math.Sqrt(Math.Pow(p.PixelColor.R - c.PixelColor.R, 2.0) + Math.Pow(p.PixelColor.G - c.PixelColor.G, 2.0) + Math.Pow(p.PixelColor.B - c.PixelColor.B, 2.0));
 }
コード例 #4
0
 /// <summary>
 /// Calculates Euclidean Distance distance between a point and a cluster centroid
 /// </summary>
 /// <param name="p">Point</param>
 /// <param name="c">Centroid</param>
 /// <returns>Calculated distance</returns>
 private double CalculateEuclideanDistance(ClusterPoint p, ClusterCentroid c)
 {
     return(Math.Sqrt(Math.Pow(p.PixelColor.R - c.PixelColor.R, 2.0) + Math.Pow(p.PixelColor.G - c.PixelColor.G, 2.0) + Math.Pow(p.PixelColor.B - c.PixelColor.B, 2.0)));
 }
コード例 #5
0
        // This method will run on a thread other than the UI thread.
        // Be sure not to manipulate any Windows Forms controls created
        // on the UI thread from this method.
        private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
        {
            Database dataBase = new Database();


            backgroundWorker.ReportProgress(0, "Working...");

            filteredImage = (Bitmap)picPreview.Image.Clone();
            int    numClusters         = (int)txtNumClusters.Value;
            int    maxIterations       = (int)txtIterations.Value;
            double accuracy            = 0.00001;
            List <ClusterPoint> points = new List <ClusterPoint>();


            for (int row = 0; row < originalImage.Width; ++row)
            {
                for (int col = 0; col < originalImage.Height; ++col)
                {
                    Color c2 = originalImage.GetPixel(row, col);
                    points.Add(new ClusterPoint(row, col, c2));
                }
            }
            List <ClusterCentroid> centroids = new List <ClusterCentroid>();
            //Create random points to use a the cluster centroids
            Random random = new Random();

            for (int i = 0; i < numClusters; i++)
            {
                int randomNumber1 = random.Next(sourceImage.Width);
                int randomNumber2 = random.Next(sourceImage.Height);
                centroids.Add(new ClusterCentroid(randomNumber1, randomNumber2, filteredImage.GetPixel(randomNumber1, randomNumber2)));
            }

            /*foreach (ClusterPoint p in points)
             * {
             *  List<SqlParameter> listParam = new List<SqlParameter>(4);
             *  listParam.Add(new SqlParameter("@x",p.X));
             *  listParam.Add(new SqlParameter("@y", p.Y));
             *  listParam.Add(new SqlParameter("@Color", p.PixelColor.ToArgb()));
             *  listParam.Add(new SqlParameter("@ImageId ", 1));
             *  dataBase.RunProcedure("usp_ClusterPointsInsert", listParam.ToArray());
             * }*/
            KMeansAlgorithm alg = new KMeansAlgorithm(points, centroids, 2, filteredImage, (int)txtNumClusters.Value);
            int             k   = 0;

            do
            {
                if ((backgroundWorker.CancellationPending == true))
                {
                    e.Cancel = true;
                    break;
                }
                else
                {
                    k++;
                    alg.J = alg.CalculateObjectiveFunction();
                    alg.CalculateClusterCentroids();
                    alg.Step();
                    double Jnew = alg.CalculateObjectiveFunction();
                    Console.WriteLine("Run method i={0} accuracy = {1} delta={2}", k, alg.J, Math.Abs(alg.J - Jnew));
                    toolStripStatusLabel2.Text = "Precision " + Math.Abs(alg.J - Jnew);

                    // Format and display the TimeSpan value.
                    string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", stopWatch.Elapsed.Hours, stopWatch.Elapsed.Minutes, stopWatch.Elapsed.Seconds, stopWatch.Elapsed.Milliseconds / 10);
                    toolStripStatusLabel3.Text = "Duration: " + elapsedTime;

                    picProcessed.Image = (Bitmap)alg.getProcessedImage;
                    backgroundWorker.ReportProgress((100 * k) / maxIterations, "Iteration " + k);

                    if (Math.Abs(alg.J - Jnew) < accuracy)
                    {
                        break;
                    }
                }
            }while (maxIterations > k);
            Console.WriteLine("Done.");

            stopWatch.Stop();
            // Get the elapsed time as a TimeSpan value.
            TimeSpan ts = stopWatch.Elapsed;

            // Save the segmented image
            picProcessed.Image = (Bitmap)alg.getProcessedImage.Clone();



            // Create a new image for each cluster in order to extract the features from the original image
            double[,] Matrix = alg.U;
            Bitmap[] bmapArray = new Bitmap[centroids.Count];
            for (int i = 0; i < centroids.Count; i++)
            {
                bmapArray[i] = new Bitmap(sourceImage.Width, sourceImage.Height, PixelFormat.Format32bppRgb);
            }

            for (int j = 0; j < points.Count; j++)
            {
                for (int i = 0; i < centroids.Count; i++)
                {
                    ClusterPoint p = points[j];
                    if (Matrix[j, i] == p.ClusterIndex)
                    {
                        bmapArray[i].SetPixel((int)p.X, (int)p.Y, p.OriginalPixelColor);
                    }
                }
            }
            k = Application.StartupPath.IndexOf("\\bin");
            string        sub       = Application.StartupPath.Substring(k);
            string        ImagePath = Application.StartupPath.Substring(0, Application.StartupPath.Length - sub.Length) + "\\AnhData\\";
            DirectoryInfo dirInfo   = new DirectoryInfo(ImagePath);

            if (dirInfo.Exists)
            {
                dirInfo.Create();
            }
            List <SqlParameter> listParam = new List <SqlParameter>(4);
            string imageName = ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1);

            listParam.Add(new SqlParameter("@ImageName", imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_segmented.png"));
            listParam.Add(new SqlParameter("@Url", "\\AnhData\\" + imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_segmented.png"));
            listParam.Add(new SqlParameter("@Width", picPreview.Image.Width));
            listParam.Add(new SqlParameter("@Height", picPreview.Image.Height));
            dataBase.RunProcedure("usp_ImageInsert", listParam.ToArray());
            alg.getProcessedImage.Save(ImagePath + imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_segmented.png");
            // Save the image for each segmented cluster
            for (int i = 0; i < centroids.Count; i++)
            {
                bmapArray[i].Save(ImagePath + imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_" + i + ".png");
                List <SqlParameter> listParam1 = new List <SqlParameter>(4);
                listParam1.Add(new SqlParameter("@ImageName", imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_" + i + ".png"));
                listParam1.Add(new SqlParameter("@Url", "\\AnhData\\" + imageName.Substring(0, ofdCluster.FileName.Substring(ofdCluster.FileName.LastIndexOf(@"\") + 1).Length - imageName.Substring(imageName.LastIndexOf(".")).Length) + "_" + i + ".png"));
                listParam1.Add(new SqlParameter("@Width", picPreview.Image.Width));
                listParam1.Add(new SqlParameter("@Height", picPreview.Image.Height));
                dataBase.RunProcedure("usp_ImageInsert", listParam1.ToArray());

                /*DataTable dt = dataBase.RunProcedureGet("usp_ImageGetAfterInsert");
                 * if (dt.Rows.Count > 0)
                 * {
                 *
                 *  List<SqlParameter> listParam1 = new List<SqlParameter>(4);
                 *  listParam1.Add(new SqlParameter("@x", centroids[i].X));
                 *  listParam1.Add(new SqlParameter("@y", centroids[i].Y));
                 *  listParam1.Add(new SqlParameter("@Color", centroids[i].PixelColor.ToArgb()));
                 *  listParam1.Add(new SqlParameter("@ImageId ", dt.Rows[0][0]));
                 *  dataBase.RunProcedure("usp_ClusterCentroidsInsert", listParam1.ToArray());
                 * }*/
            }

            // Resource cleanup...more work to do here to avoid memory problems!!!
            backgroundWorker.ReportProgress(100, "Done in " + k + " iterations.");
            ////alg.Dispose();
            for (int i = 0; i < points.Count; i++)
            {
                points[i] = null;
            }
            for (int i = 0; i < centroids.Count; i++)
            {
                centroids[i] = null;
            }
            alg = null;
            //centroids.Clear();
            //points.Clear();
        }