/// <summary> /// Construct a new nearest neighbour iterator. /// </summary> /// <param name="pRoot">The root of the tree to begin searching from.</param> /// <param name="tSearchPoint">The point in n-dimensional space to search.</param> /// <param name="kDistance">The distance function used to evaluate the points.</param> /// <param name="iMaxPoints">The max number of points which can be returned by this iterator. Capped to max in tree.</param> /// <param name="fThreshold">Threshold to apply to the search space. Negative numbers indicate that no threshold is applied.</param> public NearestNeighbour(KDNode_Rednaxela <T> pRoot, double[] tSearchPoint, IDistanceFunction kDistance, int iMaxPoints, double fThreshold) { // Check the dimensionality of the search point. if (tSearchPoint.Length != pRoot.dimensions) { throw new Exception("Dimensionality of search point and kd-tree are not the same."); } // Store the search point. this.tSearchPoint = new double[tSearchPoint.Length]; Array.Copy(tSearchPoint, this.tSearchPoint, tSearchPoint.Length); // Store the point count, distance function and tree root. this.iPointsRemaining = Math.Min(iMaxPoints, pRoot.Size); this.fThreshold = fThreshold; this.kDistanceFunction = kDistance; this.pRoot = pRoot; this.iMaxPointsReturned = iMaxPoints; _CurrentDistance = -1; // Create an interval heap for the points we check. this.pEvaluated = new IntervalHeap <T>(); // Create a min heap for the things we need to check. this.pPending = new MinHeap <KDNode_Rednaxela <T> >(); this.pPending.Insert(0, pRoot); }
/// <summary> /// Reset the iterator. /// </summary> public void Reset() { // Store the point count and the distance function. this.iPointsRemaining = Math.Min(iMaxPointsReturned, pRoot.Size); _CurrentDistance = -1; // Create an interval heap for the points we check. this.pEvaluated = new IntervalHeap <T>(); // Create a min heap for the things we need to check. this.pPending = new MinHeap <KDNode_Rednaxela <T> >(); this.pPending.Insert(0, pRoot); }