internal void IntReverse(double X, double Y, double Z, out double lat, out double lon, out double h, double[] M) { double R = GeoMath.Hypot(X, Y), slam = R != 0 ? Y / R : 0, clam = R != 0 ? X / R : 1; h = GeoMath.Hypot(R, Z); // Distance to center of earth double sphi, cphi; if (h > _maxrad) { // We doublely far away (> 12 million light years); treat the earth as a // point and h, above, is an acceptable approximation to the height. // This avoids overflow, e.g., in the computation of disc below. It's // possible that h has overflowed to inf; but that's OK. // // Treat the case X, Y finite, but R overflows to +inf by scaling by 2. R = GeoMath.Hypot(X / 2, Y / 2); slam = R != 0 ? (Y / 2) / R : 0; clam = R != 0 ? (X / 2) / R : 1; double H = GeoMath.Hypot(Z / 2, R); sphi = (Z / 2) / H; cphi = R / H; } else if (_e4a == 0) { // Treat the spherical case. Dealing with underflow in the general case // with _e2 = 0 is difficult. Origin maps to N pole same as with // ellipsoid. double H = GeoMath.Hypot(h == 0 ? 1 : Z, R); sphi = (h == 0 ? 1 : Z) / H; cphi = R / H; h -= _a; } else { // Treat prolate spheroids by swapping R and Z here and by switching // the arguments to phi = atan2(...) at the end. double p = GeoMath.Square(R / _a), q = _e2m * GeoMath.Square(Z / _a), r = (p + q - _e4a) / 6; if (_f < 0) { Utility.Swap(ref p, ref q); } if (!(_e4a * q == 0 && r <= 0)) { double // Avoid possible division by zero when r = 0 by multiplying // equations for s and t by r^3 and r, resp. S = _e4a * p * q / 4, // S = r^3 * s r2 = GeoMath.Square(r), r3 = r * r2, disc = S * (2 * r3 + S); double u = r; if (disc >= 0) { double T3 = S + r3; // Pick the sign on the sqrt to maximize abs(T3). This minimizes // loss of precision due to cancellation. The result is unchanged // because of the way the T is used in definition of u. T3 += T3 < 0 ? -Math.Sqrt(disc) : Math.Sqrt(disc); // T3 = (r * t)^3 // N.B. cbrt always returns the double root. cbrt(-8) = -2. double T = GeoMath.CubeRoot(T3); // T = r * t // T can be zero; but then r2 / T -> 0. u += T + (T != 0 ? r2 / T : 0); } else { // T is complex, but the way u is defined the result is double. double ang = Math.Atan2(Math.Sqrt(-disc), -(S + r3)); // There are three possible cube roots. We choose the root which // avoids cancellation. Note that disc < 0 implies that r < 0. u += 2 * r * Math.Cos(ang / 3); } double v = Math.Sqrt(GeoMath.Square(u) + _e4a * q), // guaranteed positive // Avoid loss of accuracy when u < 0. Underflow doesn't occur in // e4 * q / (v - u) because u ~ e^4 when q is small and u < 0. uv = u < 0 ? _e4a * q / (v - u) : u + v, // u+v, guaranteed positive // Need to guard against w going negative due to roundoff in uv - q. w = Math.Max(0, _e2a * (uv - q) / (2 * v)), // Rearrange expression for k to avoid loss of accuracy due to // subtraction. Division by 0 not possible because uv > 0, w >= 0. k = uv / (Math.Sqrt(uv + GeoMath.Square(w)) + w), k1 = _f >= 0 ? k : k - _e2, k2 = _f >= 0 ? k + _e2 : k, d = k1 * R / k2, H = GeoMath.Hypot(Z / k1, R / k2); sphi = (Z / k1) / H; cphi = (R / k2) / H; h = (1 - _e2m / k1) * GeoMath.Hypot(d, Z); } else { // e4 * q == 0 && r <= 0 // This leads to k = 0 (oblate, equatorial plane) and k + e^2 = 0 // (prolate, rotation axis) and the generation of 0/0 in the general // formulas for phi and h. using the general formula and division by 0 // in formula for h. So handle this case by taking the limits: // f > 0: z -> 0, k -> e2 * Math.Sqrt(q)/Math.Sqrt(e4 - p) // f < 0: R -> 0, k + e2 -> - e2 * Math.Sqrt(q)/Math.Sqrt(e4 - p) double zz = Math.Sqrt((_f >= 0 ? _e4a - p : p) / _e2m), xx = Math.Sqrt(_f < 0 ? _e4a - p : p), H = GeoMath.Hypot(zz, xx); sphi = zz / H; cphi = xx / H; if (Z < 0) { sphi = -sphi; // for tiny negative Z (not for prolate) } h = -_a * (_f >= 0 ? _e2m : 1) * H / _e2a; } } lat = GeoMath.Atan2d(sphi, cphi); lon = GeoMath.Atan2d(slam, clam); if (M != null) { Rotation(sphi, cphi, slam, clam, M); } }
/** * @return \e a1 the arc length (degrees) between the northward equatorial * crossing and point 1. * * The result lies in (−180°, 180°]. **********************************************************************/ public double EquatorialArc() { return(Init() ? GeoMath.Atan2d(_ssig1, _csig1) : double.NaN); }
/** * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses * the equator in a northward direction. * * The result lies in [−90°, 90°]. **********************************************************************/ public double EquatorialAzimuth() { return(Init() ? GeoMath.Atan2d(_salp0, _calp0) : double.NaN); }
///@} /** \name The general position function. **********************************************************************/ ///@{ /** * The general position function. GeodesicLine::Position and * GeodesicLine::ArcPosition are defined in terms of this function. * * @param[in] arcmode boolean flag determining the meaning of the second * parameter; if \e arcmode is false, then the GeodesicLine object must * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN. * @param[in] s12_a12 if \e arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values * specifying which of the following parameters should be set. * @param[out] lat2 GeodesicMask.LATITUDE of point 2 (degrees). * @param[out] lon2 GeodesicMask.LONGITUDE of point 2 (degrees); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::GeodesicMask.LONGITUDE. * @param[out] azi2 (forward) GeodesicMask.AZIMUTH at point 2 (degrees). * @param[out] s12 distance from point 1 to point 2 (meters); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::DISTANCE. * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::GeodesicMask.REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GeodesicMask.GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GeodesicMask.GEODESICSCALE. * @param[out] S12 GeodesicMask.AREA under the geodesic (meters<sup>2</sup>); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::GeodesicMask.AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * The GeodesicLine::mask values possible for \e outmask are * - \e outmask |= GeodesicLine::GeodesicMask.LATITUDE for the GeodesicMask.LATITUDE \e lat2; * - \e outmask |= GeodesicLine::GeodesicMask.LONGITUDE for the GeodesicMask.LATITUDE \e lon2; * - \e outmask |= GeodesicLine::GeodesicMask.AZIMUTH for the GeodesicMask.LATITUDE \e azi2; * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12; * - \e outmask |= GeodesicLine::GeodesicMask.REDUCEDLENGTH for the reduced length \e * m12; * - \e outmask |= GeodesicLine::GeodesicMask.GEODESICSCALE for the geodesic scales \e * M12 and \e M21; * - \e outmask |= GeodesicLine::GeodesicMask.AREA for the GeodesicMask.AREA \e S12; * - \e outmask |= GeodesicLine::ALL for all of the above; * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of * reducing it into the range [−180°, 180°]. * . * Requesting a value which the GeodesicLine object is not capable of * computing is not an error; the corresponding argument will not be * altered. Note, however, that the arc length is always computed and * returned as the function value. * * With the GeodesicLine::LONG_UNROLL bit seout t, the quantity \e lon2 − * \e lon1 indicates how many times and in what sense the geodesic * encircles the ellipsoid. **********************************************************************/ public double GenPosition(bool arcmode, double s12_a12, int outmask, out double lat2, out double lon2, out double azi2, out double s12, out double m12, out double M12, out double M21, out double S12) { outmask &= (_caps & GeodesicMask.OUT_MASK); lat2 = double.NaN; lon2 = double.NaN; azi2 = double.NaN; s12 = double.NaN; m12 = double.NaN; M12 = double.NaN; M21 = double.NaN; S12 = double.NaN; if (!(Init() && (arcmode || (_caps & (GeodesicMask.OUT_MASK & GeodesicMask.DISTANCE_IN)) != 0))) { // Uninitialized or impossible distance calculation requested return(double.NaN); } // Avoid warning about uninitialized B12. double sig12, ssig12, csig12, B12 = 0, AB1 = 0; if (arcmode) { // Interpret s12_a12 as spherical arc length sig12 = s12_a12 * GeoMath.Degree; GeoMath.Sincosd(s12_a12, out ssig12, out csig12); } else { // Interpret s12_a12 as distance double tau12 = s12_a12 / (_b * (1 + _A1m1)), s = Math.Sin(tau12), c = Math.Cos(tau12); // tau2 = tau1 + tau12 B12 = -Geodesic.SinCosSeries(true, _stau1 * c + _ctau1 * s, _ctau1 * c - _stau1 * s, _C1pa); sig12 = tau12 - (B12 - _B11); ssig12 = Math.Sin(sig12); csig12 = Math.Cos(sig12); if (Math.Abs(_f) > 0.01) { // Reverted distance series is inaccurate for |f| > 1/100, so correct // sig12 with 1 Newton iteration. The following table shows the // approximate maximum error for a = WGS_a() and various f relative to // GeodesicExact. // erri = the error in the inverse solution (nm) // errd = the error in the direct solution (series only) (nm) // errda = the error in the direct solution // (series + 1 Newton) (nm) // // f erri errd errda // -1/5 12e6 1.2e9 69e6 // -1/10 123e3 12e6 765e3 // -1/20 1110 108e3 7155 // -1/50 18.63 200.9 27.12 // -1/100 18.63 23.78 23.37 // -1/150 18.63 21.05 20.26 // 1/150 22.35 24.73 25.83 // 1/100 22.35 25.03 25.31 // 1/50 29.80 231.9 30.44 // 1/20 5376 146e3 10e3 // 1/10 829e3 22e6 1.5e6 // 1/5 157e6 3.8e9 280e6 double sssig2 = _ssig1 * csig12 + _csig1 * ssig12, scsig2 = _csig1 * csig12 - _ssig1 * ssig12; B12 = Geodesic.SinCosSeries(true, sssig2, scsig2, _C1a); double serr = (1 + _A1m1) * (sig12 + (B12 - _B11)) - s12_a12 / _b; sig12 = sig12 - serr / Math.Sqrt(1 + _k2 * GeoMath.Square(sssig2)); ssig12 = Math.Sin(sig12); csig12 = Math.Cos(sig12); // Update B12 below } } double ssig2, csig2, sbet2, cbet2, salp2, calp2; // sig2 = sig1 + sig12 ssig2 = _ssig1 * csig12 + _csig1 * ssig12; csig2 = _csig1 * csig12 - _ssig1 * ssig12; double dn2 = Math.Sqrt(1 + _k2 * GeoMath.Square(ssig2)); if ((outmask & (GeodesicMask.DISTANCE | GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { if (arcmode || Math.Abs(_f) > 0.01) { B12 = Geodesic.SinCosSeries(true, ssig2, csig2, _C1a); } AB1 = (1 + _A1m1) * (B12 - _B11); } // sin(bet2) = cos(alp0) * sin(sig2) sbet2 = _calp0 * ssig2; // Alt: cbet2 = hypot(csig2, salp0 * ssig2); cbet2 = GeoMath.Hypot(_salp0, _calp0 * csig2); if (cbet2 == 0) { // I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case cbet2 = csig2 = Geodesic.tiny_; } // tan(alp0) = cos(sig2)*tan(alp2) salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize if ((outmask & GeodesicMask.DISTANCE) != 0) { s12 = arcmode ? _b * ((1 + _A1m1) * sig12 + AB1) : s12_a12; } if ((outmask & GeodesicMask.LONGITUDE) != 0) { // tan(omg2) = sin(alp0) * tan(sig2) double somg2 = _salp0 * ssig2, comg2 = csig2, // No need to normalize E = GeoMath.CopySign(1, _salp0); // east-going? // omg12 = omg2 - omg1 double omg12 = (outmask & GeodesicMask.LONG_UNROLL) != 0 ? E * (sig12 - (Math.Atan2(ssig2, csig2) - Math.Atan2(_ssig1, _csig1)) + (Math.Atan2(E * somg2, comg2) - Math.Atan2(E * _somg1, _comg1))) : Math.Atan2(somg2 * _comg1 - comg2 * _somg1, comg2 * _comg1 + somg2 * _somg1); double lam12 = omg12 + _A3c * (sig12 + (Geodesic.SinCosSeries(true, ssig2, csig2, _C3a) - _B31)); double lon12 = lam12 / GeoMath.Degree; lon2 = (outmask & GeodesicMask.LONG_UNROLL) != 0 ? _lon1 + lon12 : GeoMath.AngNormalize(GeoMath.AngNormalize(_lon1) + GeoMath.AngNormalize(lon12)); } if ((outmask & GeodesicMask.LATITUDE) != 0) { lat2 = GeoMath.Atan2d(sbet2, _f1 * cbet2); } if ((outmask & GeodesicMask.AZIMUTH) != 0) { azi2 = GeoMath.Atan2d(salp2, calp2); } if ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0) { double B22 = Geodesic.SinCosSeries(true, ssig2, csig2, _C2a), AB2 = (1 + _A2m1) * (B22 - _B21), J12 = (_A1m1 - _A2m1) * sig12 + (AB1 - AB2); if ((outmask & GeodesicMask.REDUCEDLENGTH) != 0) { // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure // accurate cancellation in the case of coincident points. m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2)) - _csig1 * csig2 * J12); } if ((outmask & GeodesicMask.GEODESICSCALE) != 0) { double t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2); M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1; M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2; } } if ((outmask & GeodesicMask.AREA) != 0) { double B42 = Geodesic.SinCosSeries(false, ssig2, csig2, _C4a); double salp12, calp12; if (_calp0 == 0 || _salp0 == 0) { // alp12 = alp2 - alp1, used in Math.Atan2 so no need to normalize salp12 = salp2 * _calp1 - calp2 * _salp1; calp12 = calp2 * _calp1 + salp2 * _salp1; // We used to include here some patch up code that purported to deal // with nearly meridional geodesics properly. However, this turned out // to be wrong once _salp1 = -0 was allowed (via // Geodesic::InverseLine). In fact, the calculation of {s,c}alp12 // was already correct (following the IEEE rules for handling signed // zeros). So the patch up code was unnecessary (as well as // dangerous). } else { // tan(alp) = tan(alp0) * sec(sig) // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1) // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2) // If csig12 > 0, write // csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1) // else // csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1 // No need to normalize salp12 = _calp0 * _salp0 * (csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 : ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1)); calp12 = GeoMath.Square(_salp0) + GeoMath.Square(_calp0) * _csig1 * csig2; } S12 = _c2 * Math.Atan2(salp12, calp12) + _A4 * (B42 - _B41); } return(arcmode ? s12_a12 : sig12 / GeoMath.Degree); }
/** * Reverse projection, from transverse Mercator to geographic. * * @param[in] lon0 central meridian of the projection (degrees). * @param[in] x easting of point (meters). * @param[in] y northing of point (meters). * @param[out] lat latitude of point (degrees). * @param[out] lon longitude of point (degrees). * @param[out] gamma meridian convergence at point (degrees). * @param[out] k scale of projection at point. * * No false easting or northing is added. The value of \e lon returned is * in the range [−180°, 180°]. **********************************************************************/ public void Reverse(double lon0, double x, double y, out double lat, out double lon, out double gamma, out double k) { // This undoes the steps in Forward. The wrinkles are: (1) Use of the // reverted series to express zeta' in terms of zeta. (2) Newton's method // to solve for phi in terms of tan(phi). double xi = y / (_a1 * _k0), eta = x / (_a1 * _k0); // Explicitly enforce the parity int xisign = (xi < 0) ? -1 : 1, etasign = (eta < 0) ? -1 : 1; xi *= xisign; eta *= etasign; bool backside = xi > Math.PI / 2; if (backside) { xi = Math.PI - xi; } double c0 = Math.Cos(2 * xi), ch0 = Math.Cosh(2 * eta), s0 = Math.Sin(2 * xi), sh0 = Math.Sinh(2 * eta); int n = maxpow_; Complex a = new Complex(2 * c0 * ch0, -2 * s0 * sh0); // 2 * Math.Cos(2*zeta') Complex y0 = new Complex((n & 1) != 0 ? -_bet[n] : 0, 0); Complex y1; // default initializer is 0+i0 Complex z0 = new Complex((n & 1) != 0 ? -2 * n * _bet[n] : 0, 0); Complex z1; if ((n & 1) != 0) { --n; } while (n > 0) { y1 = a * y0 - y1 - _bet[n]; z1 = a * z0 - z1 - 2 * n * _bet[n]; --n; y0 = a * y1 - y0 - _bet[n]; z0 = a * z1 - z0 - 2 * n * _bet[n]; --n; } a /= 2; // Math.Cos(2*zeta) z1 = 1 - z1 + a * z0; a = new Complex(s0 * ch0, c0 * sh0); // Math.Sin(2*zeta) y1 = new Complex(xi, eta) + a * y0; // Convergence and scale for Gauss-Schreiber TM to Gauss-Krueger TM. gamma = GeoMath.Atan2d(z1.Imaginary, z1.Real); k = _b1 / Complex.Abs(z1); // JHS 154 has // // phi' = asin(Math.Sin(xi') / Math.Cosh(eta')) (Krueger p 17 (25)) // lam = asin(tanh(eta') / Math.Cos(phi') // psi = asinh(tan(phi')) double xip = y1.Real, etap = y1.Imaginary, s = Math.Sinh(etap), c = Math.Max(0, Math.Cos(xip)), // Math.Cos(pi/2) might be negative r = GeoMath.Hypot(s, c); if (r != 0) { lon = GeoMath.Atan2d(s, c); // Krueger p 17 (25) // Use Newton's method to solve for tau double sxip = Math.Sin(xip), tau = GeoMath.Tauf(sxip / r, _es); gamma += GeoMath.Atan2d(sxip * Math.Tanh(etap), c); // Krueger p 19 (31) lat = GeoMath.Atand(tau); // Note Math.Cos(phi') * Math.Cosh(eta') = r k *= Math.Sqrt(_e2m + _e2 / (1 + GeoMath.Square(tau))) * GeoMath.Hypot(1, tau) * r; } else { lat = 90; lon = 0; k *= _c; } lat *= xisign; if (backside) { lon = 180 - lon; } lon *= etasign; lon = GeoMath.AngNormalize(lon + lon0); if (backside) { gamma = 180 - gamma; } gamma *= xisign * etasign; gamma = GeoMath.AngNormalize(gamma); k *= _k0; }
/** * Forward projection, from geographic to transverse Mercator. * * @param[in] lon0 central meridian of the projection (degrees). * @param[in] lat latitude of point (degrees). * @param[in] lon longitude of point (degrees). * @param[out] x easting of point (meters). * @param[out] y northing of point (meters). * @param[out] gamma meridian convergence at point (degrees). * @param[out] k scale of projection at point. * * No false easting or northing is added. \e lat should be in the range * [−90°, 90°]. **********************************************************************/ public void Forward(double lon0, double lat, double lon, out double x, out double y, out double gamma, out double k) { double e; lat = GeoMath.LatFix(lat); lon = GeoMath.AngDiff(lon0, lon, out e); // Explicitly enforce the parity int latsign = (lat < 0) ? -1 : 1, lonsign = (lon < 0) ? -1 : 1; lon *= lonsign; lat *= latsign; bool backside = lon > 90; if (backside) { if (lat == 0) { latsign = -1; } lon = 180 - lon; } double sphi, cphi, slam, clam; GeoMath.Sincosd(lat, out sphi, out cphi); GeoMath.Sincosd(lon, out slam, out clam); // phi = latitude // phi' = conformal latitude // psi = isometric latitude // tau = tan(phi) // tau' = tan(phi') // [xi', eta'] = Gauss-Schreiber TM coordinates // [xi, eta] = Gauss-Krueger TM coordinates // // We use // tan(phi') = Math.Sinh(psi) // Math.Sin(phi') = tanh(psi) // Math.Cos(phi') = sech(psi) // denom^2 = 1-Math.Cos(phi')^2*Math.Sin(lam)^2 = 1-sech(psi)^2*Math.Sin(lam)^2 // Math.Sin(xip) = Math.Sin(phi')/denom = tanh(psi)/denom // Math.Cos(xip) = Math.Cos(phi')*Math.Cos(lam)/denom = sech(psi)*Math.Cos(lam)/denom // Math.Cosh(etap) = 1/denom = 1/denom // Math.Sinh(etap) = Math.Cos(phi')*Math.Sin(lam)/denom = sech(psi)*Math.Sin(lam)/denom double etap, xip; if (lat != 90) { double tau = sphi / cphi, taup = GeoMath.Taupf(tau, _es); xip = Math.Atan2(taup, clam); // Used to be // etap = Math::atanh(Math.Sin(lam) / Math.Cosh(psi)); etap = GeoMath.Asinh(slam / GeoMath.Hypot(taup, clam)); // convergence and scale for Gauss-Schreiber TM (xip, etap) -- gamma0 = // atan(tan(xip) * tanh(etap)) = atan(tan(lam) * Math.Sin(phi')); // Math.Sin(phi') = tau'/Math.Sqrt(1 + tau'^2) // Krueger p 22 (44) gamma = GeoMath.Atan2d(slam * taup, clam * GeoMath.Hypot(1, taup)); // k0 = Math.Sqrt(1 - _e2 * Math.Sin(phi)^2) * (Math.Cos(phi') / Math.Cos(phi)) * Math.Cosh(etap) // Note 1/Math.Cos(phi) = Math.Cosh(psip); // and Math.Cos(phi') * Math.Cosh(etap) = 1/hypot(Math.Sinh(psi), Math.Cos(lam)) // // This form has cancelling errors. This property is lost if Math.Cosh(psip) // is replaced by 1/Math.Cos(phi), even though it's using "primary" data (phi // instead of psip). k = Math.Sqrt(_e2m + _e2 * GeoMath.Square(cphi)) * GeoMath.Hypot(1, tau) / GeoMath.Hypot(taup, clam); } else { xip = Math.PI / 2; etap = 0; gamma = lon; k = _c; } // {xi',eta'} is {northing,easting} for Gauss-Schreiber transverse Mercator // (for eta' = 0, xi' = bet). {xi,eta} is {northing,easting} for transverse // Mercator with ant scale on the central meridian (for eta = 0, xip = // rectifying latitude). Define // // zeta = xi + i*eta // zeta' = xi' + i*eta' // // The conversion from conformal to rectifying latitude can be expressed as // a series in _n: // // zeta = zeta' + sum(h[j-1]' * Math.Sin(2 * j * zeta'), j = 1..maxpow_) // // where h[j]' = O(_n^j). The reversion of this series gives // // zeta' = zeta - sum(h[j-1] * Math.Sin(2 * j * zeta), j = 1..maxpow_) // // which is used in Reverse. // // Evaluate sums via Clenshaw method. See // https://en.wikipedia.org/wiki/Clenshaw_algorithm // // Let // // S = sum(a[k] * phi[k](x), k = 0..n) // phi[k+1](x) = alpha[k](x) * phi[k](x) + beta[k](x) * phi[k-1](x) // // Evaluate S with // // b[n+2] = b[n+1] = 0 // b[k] = alpha[k](x) * b[k+1] + beta[k+1](x) * b[k+2] + a[k] // S = (a[0] + beta[1](x) * b[2]) * phi[0](x) + b[1] * phi[1](x) // // Here we have // // x = 2 * zeta' // phi[k](x) = Math.Sin(k * x) // alpha[k](x) = 2 * Math.Cos(x) // beta[k](x) = -1 // [ Math.Sin(A+B) - 2*Math.Cos(B)*Math.Sin(A) + Math.Sin(A-B) = 0, A = k*x, B = x ] // n = maxpow_ // a[k] = _alp[k] // S = b[1] * Math.Sin(x) // // For the derivative we have // // x = 2 * zeta' // phi[k](x) = Math.Cos(k * x) // alpha[k](x) = 2 * Math.Cos(x) // beta[k](x) = -1 // [ Math.Cos(A+B) - 2*Math.Cos(B)*Math.Cos(A) + Math.Cos(A-B) = 0, A = k*x, B = x ] // a[0] = 1; a[k] = 2*k*_alp[k] // S = (a[0] - b[2]) + b[1] * Math.Cos(x) // // Matrix formulation (not used here): // phi[k](x) = [Math.Sin(k * x); k * Math.Cos(k * x)] // alpha[k](x) = 2 * [Math.Cos(x), 0; -Math.Sin(x), Math.Cos(x)] // beta[k](x) = -1 * [1, 0; 0, 1] // a[k] = _alp[k] * [1, 0; 0, 1] // b[n+2] = b[n+1] = [0, 0; 0, 0] // b[k] = alpha[k](x) * b[k+1] + beta[k+1](x) * b[k+2] + a[k] // N.B., for all k: b[k](1,2) = 0; b[k](1,1) = b[k](2,2) // S = (a[0] + beta[1](x) * b[2]) * phi[0](x) + b[1] * phi[1](x) // phi[0](x) = [0; 0] // phi[1](x) = [Math.Sin(x); Math.Cos(x)] double c0 = Math.Cos(2 * xip), ch0 = Math.Cosh(2 * etap), s0 = Math.Sin(2 * xip), sh0 = Math.Sinh(2 * etap); int n = maxpow_; Complex a = new Complex(2 * c0 * ch0, -2 * s0 * sh0); // 2 * Math.Cos(2*zeta') Complex y0 = new Complex((n & 1) != 0 ? _alp[n] : 0, 0); Complex y1; // default initializer is 0+i0 Complex z0 = new Complex((n & 1) != 0 ? 2 * n * _alp[n] : 0, 0); Complex z1; if ((n & 1) != 0) { --n; } while (n > 0) { y1 = a * y0 - y1 + _alp[n]; z1 = a * z0 - z1 + 2 * n * _alp[n]; --n; y0 = a * y1 - y0 + _alp[n]; z0 = a * z1 - z0 + 2 * n * _alp[n]; --n; } a /= 2; // Math.Cos(2*zeta') z1 = 1 - z1 + a * z0; a = new Complex(s0 * ch0, c0 * sh0); // Math.Sin(2*zeta') y1 = new Complex(xip, etap) + a * y0; // Fold in change in convergence and scale for Gauss-Schreiber TM to // Gauss-Krueger TM. gamma -= GeoMath.Atan2d(z1.Imaginary, z1.Real); k *= _b1 * Complex.Abs(z1); double xi = y1.Real, eta = y1.Imaginary; y = _a1 * _k0 * (backside ? Math.PI - xi : xi) * latsign; x = _a1 * _k0 * eta * lonsign; if (backside) { gamma = 180 - gamma; } gamma *= latsign * lonsign; gamma = GeoMath.AngNormalize(gamma); k *= _k0; }