private void CreateNeuralNetworkForImprovementSelection() { const int pps = 4; _nn = NeuronNetwork.Make(new ChooseBetweenFirstAndSecondFavoriteNeuronNetworkConstructor() {NumberOfPastPerformances = pps}) as DetectImprovementNeuronNetwork; _nn.AddHiddenLayer(_nn.Layers.ToList()[0].Neurons.Count()/2); // _nn.AddHiddenLayer(5); _nn.AddOutputLayer(); _neuralNetworkCtrl.Bind(_nn); LoadRacesForImprovementSelection(); _neuralNetworkCtrl.Invalidate(); ClearDisplay(); UpdateScreen(); }
private void CreateNeuralNetworkForWinnerSelection() { const int fieldSize =6; const int numberOfPP =3; _nn = NeuronNetwork.Make(new DetectWinnerNeuronNetworkConstructor() { FieldSize = fieldSize, NumberOfPastPerformancesToUse = numberOfPP }) as DetectWinnerNeuronNetwork; _nn.AddHiddenLayer(8); _nn.AddOutputLayer(); _neuralNetworkCtrl.Bind(_nn); LoadRaces(); _neuralNetworkCtrl.Invalidate(); ClearDisplay(); UpdateScreen(); }
private void ChooseBetweenFirstAndSecondFavorite() { _nn = NeuronNetwork.Make(new ChooseBetweenFirstAndSecondFavoriteNeuronNetworkConstructor() { NumberOfPastPerformances = 3 }) as ChooseBetweenFirstAndSecondFavoriteNeuronNetwork; //_nn.AddHiddenLayer(2*_nn.Layers.ToList()[0].Neurons.Count() +1); _nn.AddHiddenLayer(_nn.Layers.ToList()[0].Neurons.Count() /2); _nn.AddOutputLayer(); _neuralNetworkCtrl.Bind(_nn); ChooseBetweenFirstAndSecondFavoriteSelection(); _neuralNetworkCtrl.Invalidate(); ClearDisplay(); UpdateScreen(); }