/// <summary>
        /// Calculates alpha and beta parameters to linearly scale elements of original to the scale and location of target
        /// original[i] * beta + alpha
        /// </summary>
        /// <param name="original">Values that should be scaled</param>
        /// <param name="target">Target values to which the original values should be scaled</param>
        /// <param name="alpha">Additive constant for the linear scaling</param>
        /// <param name="beta">Multiplicative factor for the linear scaling</param>
        /// <param name="errorState">Flag that indicates if errors occurred in the calculation of the linea scaling parameters.</param>
        public static void Calculate(IEnumerable <double> original, IEnumerable <double> target, out double alpha, out double beta, out OnlineCalculatorError errorState)
        {
            OnlineLinearScalingParameterCalculator calculator = new OnlineLinearScalingParameterCalculator();
            IEnumerator <double> originalEnumerator           = original.GetEnumerator();
            IEnumerator <double> targetEnumerator             = target.GetEnumerator();

            // always move forward both enumerators (do not use short-circuit evaluation!)
            while (originalEnumerator.MoveNext() & targetEnumerator.MoveNext())
            {
                double originalElement = originalEnumerator.Current;
                double targetElement   = targetEnumerator.Current;
                calculator.Add(originalElement, targetElement);
                if (calculator.ErrorState != OnlineCalculatorError.None)
                {
                    break;
                }
            }

            // check if both enumerators are at the end to make sure both enumerations have the same length
            if (calculator.ErrorState == OnlineCalculatorError.None &&
                (originalEnumerator.MoveNext() || targetEnumerator.MoveNext()))
            {
                throw new ArgumentException("Number of elements in original and target enumeration do not match.");
            }
            else
            {
                errorState = calculator.ErrorState;
                alpha      = calculator.Alpha;
                beta       = calculator.Beta;
            }
        }
コード例 #2
0
 protected OnlineLinearScalingParameterCalculator(OnlineLinearScalingParameterCalculator original, Cloner cloner)
     : base(original, cloner)
 {
     targetMeanCalculator = cloner.Clone(original.targetMeanCalculator);
     originalMeanAndVarianceCalculator  = cloner.Clone(original.originalMeanAndVarianceCalculator);
     originalTargetCovarianceCalculator = cloner.Clone(original.originalTargetCovarianceCalculator);
     // do not reset the calculators here
 }
コード例 #3
0
        private void CalculateTrainingPrognosisResults()
        {
            OnlineCalculatorError errorState;
            var problemData = Solution.ProblemData;

            if (!problemData.TrainingIndices.Any())
            {
                return;
            }
            var model = Solution.Model;
            //mean model
            double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
            var    meanModel    = new ConstantModel(trainingMean);

            //AR1 model
            double alpha, beta;
            IEnumerable <double> trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();

            OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
            var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha);

            var trainingHorizions = problemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, problemData.TrainingPartition.End - r)).ToList();
            IEnumerable <IEnumerable <double> > trainingTargetValues         = problemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList();
            IEnumerable <IEnumerable <double> > trainingEstimatedValues      = model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingAR1ModelPredictions  = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();

            IEnumerable <double> originalTrainingValues  = trainingTargetValues.SelectMany(x => x).ToList();
            IEnumerable <double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();

            double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
            double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
            double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
            double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
            double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
            double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;

            PrognosisTrainingDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
            PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
            PrognosisTrainingTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
            PrognosisTrainingTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
        }
コード例 #4
0
        protected void CalculateTimeSeriesResults()
        {
            OnlineCalculatorError errorState;
            double trainingMean = ProblemData.TrainingIndices.Any() ? ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average() : double.NaN;
            var    meanModel    = new ConstantModel(trainingMean);

            double alpha, beta;
            IEnumerable <double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();

            OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
            var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);


            #region Calculate training quality measures
            if (ProblemData.TrainingIndices.Any())
            {
                IEnumerable <double> trainingTargetValues         = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
                IEnumerable <double> trainingEstimatedValues      = EstimatedTrainingValues.ToList();
                IEnumerable <double> trainingMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
                IEnumerable <double> trainingAR1ModelPredictions  = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();

                TrainingDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
                TrainingDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0;
                TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
                TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0;
                TrainingTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
                TrainingTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticAR1 : double.PositiveInfinity;
                TrainingTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
                TrainingTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity;
            }
            #endregion

            #region Calculate test quality measures
            if (ProblemData.TestIndices.Any())
            {
                IEnumerable <double> testTargetValues         = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToList();
                IEnumerable <double> testEstimatedValues      = EstimatedTestValues.ToList();
                IEnumerable <double> testMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
                IEnumerable <double> testAR1ModelPredictions  = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();

                TestDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
                TestDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0;
                TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
                TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0;
                TestTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
                TestTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticAR1 : double.PositiveInfinity;
                TestTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
                TestTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity;
            }
            #endregion
        }
コード例 #5
0
    /// <summary>
    /// Calculates alpha and beta parameters to linearly scale elements of original to the scale and location of target
    /// original[i] * beta + alpha
    /// </summary>
    /// <param name="original">Values that should be scaled</param>
    /// <param name="target">Target values to which the original values should be scaled</param>
    /// <param name="alpha">Additive constant for the linear scaling</param>
    /// <param name="beta">Multiplicative factor for the linear scaling</param>
    /// <param name="errorState">Flag that indicates if errors occurred in the calculation of the linea scaling parameters.</param>
    public static void Calculate(IEnumerable<double> original, IEnumerable<double> target, out double alpha, out double beta, out OnlineCalculatorError errorState) {
      OnlineLinearScalingParameterCalculator calculator = new OnlineLinearScalingParameterCalculator();
      IEnumerator<double> originalEnumerator = original.GetEnumerator();
      IEnumerator<double> targetEnumerator = target.GetEnumerator();

      // always move forward both enumerators (do not use short-circuit evaluation!)
      while (originalEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
        double originalElement = originalEnumerator.Current;
        double targetElement = targetEnumerator.Current;
        calculator.Add(originalElement, targetElement);
        if (calculator.ErrorState != OnlineCalculatorError.None) break;
      }

      // check if both enumerators are at the end to make sure both enumerations have the same length
      if (calculator.ErrorState == OnlineCalculatorError.None &&
            (originalEnumerator.MoveNext() || targetEnumerator.MoveNext())) {
        throw new ArgumentException("Number of elements in original and target enumeration do not match.");
      } else {
        errorState = calculator.ErrorState;
        alpha = calculator.Alpha;
        beta = calculator.Beta;
      }
    }