private OffspringSelectionEvolutionStrategy(OffspringSelectionEvolutionStrategy original, Cloner cloner) : base(original, cloner) { qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); selectionPressureAnalyzer = cloner.Clone(original.selectionPressureAnalyzer); Initialize(); }
private OffspringSelectionEvolutionStrategy CreateOSESGriewankSample() { OffspringSelectionEvolutionStrategy es = new OffspringSelectionEvolutionStrategy(); #region Problem Configuration SingleObjectiveTestFunctionProblem problem = new SingleObjectiveTestFunctionProblem(); problem.ProblemSize.Value = 10; problem.EvaluatorParameter.Value = new GriewankEvaluator(); problem.SolutionCreatorParameter.Value = new UniformRandomRealVectorCreator(); problem.Maximization.Value = false; problem.Bounds = new DoubleMatrix(new double[,] { { -600, 600 } }); problem.BestKnownQuality.Value = 0; problem.BestKnownSolutionParameter.Value = new RealVector(10); problem.Name = "Single Objective Test Function"; problem.Description = "Test function with real valued inputs and a single objective."; #endregion #region Algorithm Configuration es.Name = "Offspring Selection Evolution Strategy - Griewank"; es.Description = "An evolution strategy with offspring selection which solves the 10-dimensional Griewank test function"; es.Problem = problem; SamplesUtils.ConfigureOffspringSelectionEvolutionStrategyParameters<AverageCrossover, NormalAllPositionsManipulator, StdDevStrategyVectorCreator, StdDevStrategyVectorCrossover, StdDevStrategyVectorManipulator>(es, 50, 1.0, 0.5, 100, 2, 100, false); StdDevStrategyVectorCreator strategyCreator = (StdDevStrategyVectorCreator)es.StrategyParameterCreator; strategyCreator.BoundsParameter.Value = new DoubleMatrix(new double[,] { { 1, 20 } }); StdDevStrategyVectorManipulator strategyManipulator = (StdDevStrategyVectorManipulator)es.StrategyParameterManipulator; strategyManipulator.BoundsParameter.Value = new DoubleMatrix(new double[,] { { 1E-12, 30 } }); strategyManipulator.GeneralLearningRateParameter.Value = new DoubleValue(0.22360679774997896); strategyManipulator.LearningRateParameter.Value = new DoubleValue(0.39763536438352531); #endregion return es; }