コード例 #1
0
        // BackwardsCompatibility3.4
        #region Backwards compatible code, remove with 3.5
        public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable <string> allowedInputVariables,
                                                                                                    int svmType, int kernelType, double cost, double nu, double gamma, int degree, out double trainingAccuracy, out double testAccuracy, out int nSv)
        {
            ISupportVectorMachineModel model;

            Run(problemData, allowedInputVariables, svmType, kernelType, cost, nu, gamma, degree, out model, out nSv);
            var solution = new SupportVectorClassificationSolution((SupportVectorMachineModel)model, (IClassificationProblemData)problemData.Clone());

            trainingAccuracy = solution.TrainingAccuracy;
            testAccuracy     = solution.TestAccuracy;

            return(solution);
        }
コード例 #2
0
        protected override void Run()
        {
            IClassificationProblemData problemData            = Problem.ProblemData;
            IEnumerable <string>       selectedInputVariables = problemData.AllowedInputVariables;
            int nSv;
            ISupportVectorMachineModel model;

            Run(problemData, selectedInputVariables, GetSvmType(SvmType.Value), GetKernelType(KernelType.Value), Cost.Value, Nu.Value, Gamma.Value, Degree.Value, out model, out nSv);

            if (CreateSolution)
            {
                var solution = new SupportVectorClassificationSolution((SupportVectorMachineModel)model, (IClassificationProblemData)problemData.Clone());
                Results.Add(new Result("Support vector classification solution", "The support vector classification solution.",
                                       solution));
            }

            {
                // calculate classification metrics
                // calculate regression model metrics
                var ds         = problemData.Dataset;
                var trainRows  = problemData.TrainingIndices;
                var testRows   = problemData.TestIndices;
                var yTrain     = ds.GetDoubleValues(problemData.TargetVariable, trainRows);
                var yTest      = ds.GetDoubleValues(problemData.TargetVariable, testRows);
                var yPredTrain = model.GetEstimatedClassValues(ds, trainRows);
                var yPredTest  = model.GetEstimatedClassValues(ds, testRows);

                OnlineCalculatorError error;
                var trainAccuracy = OnlineAccuracyCalculator.Calculate(yPredTrain, yTrain, out error);
                if (error != OnlineCalculatorError.None)
                {
                    trainAccuracy = double.MaxValue;
                }
                var testAccuracy = OnlineAccuracyCalculator.Calculate(yPredTest, yTest, out error);
                if (error != OnlineCalculatorError.None)
                {
                    testAccuracy = double.MaxValue;
                }

                Results.Add(new Result("Accuracy (training)", "The mean of squared errors of the SVR solution on the training partition.", new DoubleValue(trainAccuracy)));
                Results.Add(new Result("Accuracy (test)", "The mean of squared errors of the SVR solution on the test partition.", new DoubleValue(testAccuracy)));

                Results.Add(new Result("Number of support vectors", "The number of support vectors of the SVR solution.",
                                       new IntValue(nSv)));
            }
        }
 private SupportVectorClassificationSolution(SupportVectorClassificationSolution original, Cloner cloner)
     : base(original, cloner)
 {
 }
コード例 #4
0
 private SupportVectorClassificationSolution(SupportVectorClassificationSolution original, Cloner cloner)
   : base(original, cloner) {
 }