コード例 #1
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        public static NFP cleanPolygon2(NFP polygon, double clipperScale, double curveTolerance = 0.72)
        {
            var p = svgToClipper(polygon, clipperScale);
            // remove self-intersections and find the biggest polygon that's left
            var simple = ClipperLib.Clipper.SimplifyPolygon(p.ToList(), ClipperLib.PolyFillType.pftNonZero);

            if (simple == null || simple.Count == 0)
            {
                return(null);
            }

            var biggest     = simple[0];
            var biggestarea = Math.Abs(ClipperLib.Clipper.Area(biggest));

            for (var i = 1; i < simple.Count; i++)
            {
                var area = Math.Abs(ClipperLib.Clipper.Area(simple[i]));
                if (area > biggestarea)
                {
                    biggest     = simple[i];
                    biggestarea = area;
                }
            }

            // clean up singularities, coincident points and edges
            var clean = ClipperLib.Clipper.CleanPolygon(biggest, 0.01 *
                                                        curveTolerance * clipperScale);

            if (clean == null || clean.Count == 0)
            {
                return(null);
            }
            var cleaned = clipperToSvg(clean, clipperScale);

            // remove duplicate endpoints
            var start = cleaned[0];
            var end   = cleaned[cleaned.Length - 1];

            if (start == end || (GeometryUtil._almostEqual(start.X, end.X) &&
                                 GeometryUtil._almostEqual(start.Y, end.Y)))
            {
                cleaned.Points = cleaned.Points.Take(cleaned.Points.Count() - 1).ToArray();
            }

            return(cleaned);
        }
コード例 #2
0
        public static IntPoint[][] nfpToClipperCoordinates(NFP nfp, double clipperScale = 10000000)
        {
            List <IntPoint[]> clipperNfp = new List <IntPoint[]>();

            // children first
            if (nfp.Childrens != null && nfp.Childrens.Count > 0)
            {
                for (var j = 0; j < nfp.Childrens.Count; j++)
                {
                    if (GeometryUtil.polygonArea(nfp.Childrens[j]) < 0)
                    {
                        nfp.Childrens[j].reverse();
                    }
                    //var childNfp = SvgNest.toClipperCoordinates(nfp.children[j]);
                    var childNfp = ScaleUpPaths(nfp.Childrens[j], clipperScale);
                    clipperNfp.Add(childNfp);
                }
            }

            if (GeometryUtil.polygonArea(nfp) > 0)
            {
                nfp.reverse();
            }


            //var outerNfp = SvgNest.toClipperCoordinates(nfp);

            // clipper js defines holes based on orientation

            var outerNfp = ScaleUpPaths(nfp, clipperScale);

            //var cleaned = ClipperLib.Clipper.CleanPolygon(outerNfp, 0.00001*config.clipperScale);

            clipperNfp.Add(outerNfp);
            //var area = Math.abs(ClipperLib.Clipper.Area(cleaned));

            return(clipperNfp.ToArray());
        }
コード例 #3
0
        public static NFP MinkowskiSum(NFP pattern, NFP path, bool useChilds = false, bool takeOnlyBiggestArea = true)
        {
            var ac = ScaleUpPaths(pattern);

            List <List <IntPoint> > solution = null;

            if (useChilds)
            {
                var bc = nfpToClipperCoordinates(path);
                for (var i = 0; i < bc.Length; i++)
                {
                    for (int j = 0; j < bc[i].Length; j++)
                    {
                        bc[i][j].X *= -1;
                        bc[i][j].Y *= -1;
                    }
                }

                solution = ClipperLib.Clipper.MinkowskiSum(new List <IntPoint>(ac), new List <List <IntPoint> >(bc.Select(z => z.ToList())), true);
            }
            else
            {
                var bc = ScaleUpPaths(path);
                for (var i = 0; i < bc.Length; i++)
                {
                    bc[i].X *= -1;
                    bc[i].Y *= -1;
                }
                solution = Clipper.MinkowskiSum(new List <IntPoint>(ac), new List <IntPoint>(bc), true);
            }
            NFP clipperNfp = null;

            double?largestArea  = null;
            int    largestIndex = -1;

            for (int i = 0; i < solution.Count(); i++)
            {
                var n     = toNestCoordinates(solution[i].ToArray(), 10000000);
                var sarea = Math.Abs(GeometryUtil.polygonArea(n));
                if (largestArea == null || largestArea < sarea)
                {
                    clipperNfp   = n;
                    largestArea  = sarea;
                    largestIndex = i;
                }
            }
            if (!takeOnlyBiggestArea)
            {
                for (int j = 0; j < solution.Count; j++)
                {
                    if (j == largestIndex)
                    {
                        continue;
                    }
                    var n = toNestCoordinates(solution[j].ToArray(), 10000000);
                    if (clipperNfp.Childrens == null)
                    {
                        clipperNfp.Childrens = new List <NFP>();
                    }
                    clipperNfp.Childrens.Add(n);
                }
            }

            for (var i = 0; i < clipperNfp.Length; i++)
            {
                clipperNfp[i].X *= -1;
                clipperNfp[i].Y *= -1;
                clipperNfp[i].X += pattern[0].X;
                clipperNfp[i].Y += pattern[0].Y;
            }
            var minx  = clipperNfp.Points.Min(z => z.X);
            var miny  = clipperNfp.Points.Min(z => z.Y);
            var minx2 = path.Points.Min(z => z.X);
            var miny2 = path.Points.Min(z => z.Y);

            var shiftx = minx2 - minx;
            var shifty = miny2 - miny;

            if (clipperNfp.Childrens != null)
            {
                foreach (var nFP in clipperNfp.Childrens)
                {
                    for (int j = 0; j < nFP.Length; j++)
                    {
                        nFP.Points[j].X *= -1;
                        nFP.Points[j].Y *= -1;
                        nFP.Points[j].X += pattern[0].X;
                        nFP.Points[j].Y += pattern[0].Y;
                    }
                }
            }

            return(clipperNfp);
        }
コード例 #4
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        public static NFP simplifyFunction(NFP polygon, bool inside, double clipperScale, double curveTolerance = 0.72, bool hullSimplify = false)
        {
            var tolerance = 4 * curveTolerance;

            // give special treatment to line segments above this length (squared)
            var fixedTolerance = 40 * curveTolerance * 40 * curveTolerance;
            int i, j, k;


            if (hullSimplify)
            {
                // use convex hull
                var hull = getHull(polygon);
                if (hull != null)
                {
                    return(hull);
                }
                else
                {
                    return(polygon);
                }
            }

            var cleaned = cleanPolygon2(polygon, clipperScale);

            if (cleaned != null && cleaned.Length > 1)
            {
                polygon = cleaned;
            }
            else
            {
                return(polygon);
            }
            // polygon to polyline
            var copy = polygon.slice(0);

            copy.push(copy[0]);
            // mark all segments greater than ~0.25 in to be kept
            // the PD simplification algo doesn't care about the accuracy of long lines, only the absolute distance of each point
            // we care a great deal
            for (i = 0; i < copy.Length - 1; i++)
            {
                var p1  = copy[i];
                var p2  = copy[i + 1];
                var sqd = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);
                if (sqd > fixedTolerance)
                {
                    p1.marked = true;
                    p2.marked = true;
                }
            }

            var simple = Simplify.simplify(copy, tolerance, true);

            // now a polygon again
            //simple.pop();
            simple.Points = simple.Points.Take(simple.Points.Count() - 1).ToArray();

            // could be dirty again (self intersections and/or coincident points)
            simple = cleanPolygon2(simple, clipperScale);

            // simplification process reduced poly to a line or point
            if (simple == null)
            {
                simple = polygon;
            }



            var offsets = polygonOffsetDeepNest(simple, inside ? -tolerance : tolerance, clipperScale);

            NFP        offset     = null;
            double     offsetArea = 0;
            List <NFP> holes      = new List <NFP>();

            for (i = 0; i < offsets.Length; i++)
            {
                var area = GeometryUtil.polygonArea(offsets[i]);
                if (offset == null || area < offsetArea)
                {
                    offset     = offsets[i];
                    offsetArea = area;
                }
                if (area > 0)
                {
                    holes.Add(offsets[i]);
                }
            }

            // mark any points that are exact
            for (i = 0; i < simple.Length; i++)
            {
                var seg = new NFP();
                seg.AddPoint(simple[i]);
                seg.AddPoint(simple[i + 1 == simple.Length ? 0 : i + 1]);

                var index1 = find(seg[0], polygon);
                var index2 = find(seg[1], polygon);

                if (index1 + 1 == index2 || index2 + 1 == index1 || (index1 == 0 && index2 == polygon.Length - 1) || (index2 == 0 && index1 == polygon.Length - 1))
                {
                    seg[0].exact = true;
                    seg[1].exact = true;
                }
            }
            var numshells = 4;

            NFP[] shells = new NFP[numshells];

            for (j = 1; j < numshells; j++)
            {
                var delta = j * (tolerance / numshells);
                delta = inside ? -delta : delta;
                var shell = polygonOffsetDeepNest(simple, delta, clipperScale);
                if (shell.Count() > 0)
                {
                    shells[j] = shell.First();
                }
                else
                {
                    //shells[j] = shell;
                }
            }

            if (offset == null)
            {
                return(polygon);
            }
            // selective reversal of offset
            for (i = 0; i < offset.Length; i++)
            {
                var o      = offset[i];
                var target = getTarget(o, simple, 2 * tolerance);

                // reverse point offset and try to find exterior points
                var test = clone(offset);
                test.Points[i] = new SvgPoint(target.X, target.Y);

                if (!exterior(test, polygon, inside))
                {
                    o.X = target.X;
                    o.Y = target.Y;
                }
                else
                {
                    // a shell is an intermediate offset between simple and offset
                    for (j = 1; j < numshells; j++)
                    {
                        if (shells[j] != null)
                        {
                            var shell = shells[j];
                            var delta = j * (tolerance / numshells);
                            target         = getTarget(o, shell, 2 * delta);
                            test           = clone(offset);
                            test.Points[i] = new SvgPoint(target.X, target.Y);
                            if (!exterior(test, polygon, inside))
                            {
                                o.X = target.X;
                                o.Y = target.Y;
                                break;
                            }
                        }
                    }
                }
            }

            // straighten long lines
            // a rounded rectangle would still have issues at this point, as the long sides won't line up straight

            var straightened = false;

            for (i = 0; i < offset.Length; i++)
            {
                var p1 = offset[i];
                var p2 = offset[i + 1 == offset.Length ? 0 : i + 1];

                var sqd = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);

                if (sqd < fixedTolerance)
                {
                    continue;
                }
                for (j = 0; j < simple.Length; j++)
                {
                    var s1 = simple[j];
                    var s2 = simple[j + 1 == simple.Length ? 0 : j + 1];

                    var sqds = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);

                    if (sqds < fixedTolerance)
                    {
                        continue;
                    }

                    if ((GeometryUtil._almostEqual(s1.X, s2.X) || GeometryUtil._almostEqual(s1.Y, s2.Y)) && // we only really care about vertical and horizontal lines
                        GeometryUtil._withinDistance(p1, s1, 2 * tolerance) &&
                        GeometryUtil._withinDistance(p2, s2, 2 * tolerance) &&
                        (!GeometryUtil._withinDistance(p1, s1, curveTolerance / 1000) ||
                         !GeometryUtil._withinDistance(p2, s2, curveTolerance / 1000)))
                    {
                        p1.X         = s1.X;
                        p1.Y         = s1.Y;
                        p2.X         = s2.X;
                        p2.Y         = s2.Y;
                        straightened = true;
                    }
                }
            }

            //if(straightened){

            var Ac = ClipperHelper.ScaleUpPaths(offset, 10000000);
            var Bc = ClipperHelper.ScaleUpPaths(polygon, 10000000);

            var combined = new List <List <IntPoint> >();
            var clipper  = new ClipperLib.Clipper();

            clipper.AddPath(Ac.ToList(), ClipperLib.PolyType.ptSubject, true);
            clipper.AddPath(Bc.ToList(), ClipperLib.PolyType.ptSubject, true);

            // the line straightening may have made the offset smaller than the simplified
            if (clipper.Execute(ClipperLib.ClipType.ctUnion, combined, ClipperLib.PolyFillType.pftNonZero, ClipperLib.PolyFillType.pftNonZero))
            {
                double?largestArea = null;
                for (i = 0; i < combined.Count; i++)
                {
                    var n     = toNestCoordinates(combined[i].ToArray(), 10000000);
                    var sarea = -GeometryUtil.polygonArea(n);
                    if (largestArea == null || largestArea < sarea)
                    {
                        offset      = n;
                        largestArea = sarea;
                    }
                }
            }
            //}

            cleaned = cleanPolygon2(offset, clipperScale);
            if (cleaned != null && cleaned.Length > 1)
            {
                offset = cleaned;
            }

            // mark any points that are exact (for line merge detection)
            for (i = 0; i < offset.Length; i++)
            {
                var seg    = new SvgPoint[] { offset[i], offset[i + 1 == offset.Length ? 0 : i + 1] };
                var index1 = find(seg[0], polygon);
                var index2 = find(seg[1], polygon);
                if (index1 == null)
                {
                    index1 = 0;
                }
                if (index2 == null)
                {
                    index2 = 0;
                }
                if (index1 + 1 == index2 || index2 + 1 == index1 ||
                    (index1 == 0 && index2 == polygon.Length - 1) ||
                    (index2 == 0 && index1 == polygon.Length - 1))
                {
                    seg[0].exact = true;
                    seg[1].exact = true;
                }
            }

            if (!inside && holes != null && holes.Count > 0)
            {
                offset.Childrens = holes;
            }

            return(offset);
        }