コード例 #1
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        public static IntPoint[][] nfpToClipperCoordinates(NFP nfp, double clipperScale = 10000000)
        {
            List <IntPoint[]> clipperNfp = new List <IntPoint[]>();

            // children first
            if (nfp.Childrens != null && nfp.Childrens.Count > 0)
            {
                for (var j = 0; j < nfp.Childrens.Count; j++)
                {
                    if (GeometryUtil.polygonArea(nfp.Childrens[j]) < 0)
                    {
                        nfp.Childrens[j].reverse();
                    }

                    var childNfp = ClipperHelper.ScaleUpPaths(nfp.Childrens[j], clipperScale);
                    clipperNfp.Add(childNfp);
                }
            }

            if (GeometryUtil.polygonArea(nfp) > 0)
            {
                nfp.reverse();
            }
            var outerNfp = ClipperHelper.ScaleUpPaths(nfp, clipperScale);

            clipperNfp.Add(outerNfp);
            return(clipperNfp.ToArray());
        }
コード例 #2
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        //public static NFP[] Convolve(NFP A, NFP B)
        //{
        //    Dictionary<string, List<PointF>> dic1 = new Dictionary<string, List<PointF>>();
        //    Dictionary<string, List<double>> dic2 = new Dictionary<string, List<double>>();
        //    dic2.Add("A", new List<double>());
        //    foreach (var item in A.Points)
        //    {
        //        var target = dic2["A"];
        //        target.Add(item.X);
        //        target.Add(item.Y);
        //    }
        //    dic2.Add("B", new List<double>());
        //    foreach (var item in B.Points)
        //    {
        //        var target = dic2["B"];
        //        target.Add(item.X);
        //        target.Add(item.Y);
        //    }


        //    List<double> hdat = new List<double>();

        //    foreach (var item in A.Childrens)
        //    {
        //        foreach (var pitem in item.Points)
        //        {
        //            hdat.Add(pitem.X);
        //            hdat.Add(pitem.Y);
        //        }
        //    }

        //    var aa = dic2["A"];
        //    var bb = dic2["B"];
        //    var arr1 = A.Childrens.Select(z => z.Points.Count() * 2).ToArray();

        //    MinkowskiWrapper.setData(aa.Count, aa.ToArray(), A.Childrens.Count, arr1, hdat.ToArray(), bb.Count, bb.ToArray());
        //    MinkowskiWrapper.calculateNFP();



        //    int[] sizes = new int[2];
        //    MinkowskiWrapper.getSizes1(sizes);
        //    int[] sizes1 = new int[sizes[0]];
        //    int[] sizes2 = new int[sizes[1]];
        //    MinkowskiWrapper.getSizes2(sizes1, sizes2);
        //    double[] dat1 = new double[sizes1.Sum()];
        //    double[] hdat1 = new double[sizes2.Sum()];

        //    MinkowskiWrapper.getResults(dat1, hdat1);

        //    if (sizes1.Count() > 1)
        //    {
        //        throw new ArgumentException("sizes1 cnt >1");
        //    }


        //    //convert back to answer here
        //    bool isa = true;
        //    List<PointF> Apts = new List<PointF>();



        //    List<List<double>> holesval = new List<List<double>>();
        //    bool holes = false;

        //    for (int i = 0; i < dat1.Length; i += 2)
        //    {
        //        var x1 = (float)dat1[i];
        //        var y1 = (float)dat1[i + 1];
        //        Apts.Add(new PointF(x1, y1));
        //    }

        //    int index = 0;
        //    for (int i = 0; i < sizes2.Length; i++)
        //    {
        //        holesval.Add(new List<double>());
        //        for (int j = 0; j < sizes2[i]; j++)
        //        {
        //            holesval.Last().Add(hdat1[index]);
        //            index++;
        //        }
        //    }

        //    List<List<PointF>> holesout = new List<List<PointF>>();
        //    foreach (var item in holesval)
        //    {
        //        holesout.Add(new List<PointF>());
        //        for (int i = 0; i < item.Count; i += 2)
        //        {
        //            var x = (float)item[i];
        //            var y = (float)item[i + 1];
        //            holesout.Last().Add(new PointF(x, y));
        //        }
        //    }

        //    NFP ret = new NFP();
        //    ret.Points = new SvgPoint[] { };
        //    foreach (var item in Apts)
        //    {
        //        ret.AddPoint(new SvgPoint(item.X, item.Y));
        //    }


        //    foreach (var item in holesout)
        //    {
        //        if (ret.Childrens == null)
        //            ret.Childrens = new List<NFP>();

        //        ret.Childrens.Add(new NFP());
        //        ret.Childrens.Last().Points = new SvgPoint[] { };
        //        foreach (var hitem in item)
        //        {
        //            ret.Childrens.Last().AddPoint(new SvgPoint(hitem.X, hitem.Y));
        //        }
        //    }

        //    var res = new NFP[] { ret };
        //    return res;
        //}

        public static NFP getOuterNfp(NFP A, NFP B, bool inside = false)
        {
            NFP[] nfp = null;


            if (inside || (A.Childrens != null && A.Childrens.Count > 0))
            {
                nfp = DeepNest.Convolve(A, B);
            }
            else
            {
                var Ac = ClipperHelper.ScaleUpPaths(A, 10000000);

                var Bc = ClipperHelper.ScaleUpPaths(B, 10000000);
                for (var i = 0; i < Bc.Length; i++)
                {
                    Bc[i].X *= -1;
                    Bc[i].Y *= -1;
                }
                var solution   = ClipperLib.Clipper.MinkowskiSum(new List <IntPoint>(Ac), new List <IntPoint>(Bc), true);
                NFP clipperNfp = null;

                double?largestArea = null;
                for (int i = 0; i < solution.Count(); i++)
                {
                    var n     = toNestCoordinates(solution[i].ToArray(), 10000000);
                    var sarea = GeometryUtil.polygonArea(n);
                    if (largestArea == null || largestArea > sarea)
                    {
                        clipperNfp  = n;
                        largestArea = sarea;
                    }
                }

                for (var i = 0; i < clipperNfp.Length; i++)
                {
                    clipperNfp[i].X += B[0].X;
                    clipperNfp[i].Y += B[0].Y;
                }
                nfp = new NFP[] { new NFP()
                                  {
                                      Points = clipperNfp.Points
                                  } };
            }

            if (nfp == null || nfp.Length == 0)
            {
                //console.log('holy shit', nfp, A, B, JSON.stringify(A), JSON.stringify(B));
                return(null);
            }

            NFP nfps = nfp.First();

            if (nfps == null || nfps.Length == 0)
            {
                return(null);
            }

            return(nfps);
        }
コード例 #3
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        // converts a polygon from normal float coordinates to integer coordinates used by clipper, as well as x/y -> X/Y
        public static IntPoint[] svgToClipper2(NFP polygon, double clipperScale, double?scale = null)
        {
            var d = ClipperHelper.ScaleUpPaths(polygon, scale == null ? clipperScale : scale.Value);

            return(d.ToArray());
        }
コード例 #4
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        public static NFP simplifyFunction(NFP polygon, bool inside, double clipperScale, double curveTolerance = 0.72, bool hullSimplify = false)
        {
            var tolerance = 4 * curveTolerance;

            // give special treatment to line segments above this length (squared)
            var fixedTolerance = 40 * curveTolerance * 40 * curveTolerance;
            int i, j, k;


            if (hullSimplify)
            {
                // use convex hull
                var hull = getHull(polygon);
                if (hull != null)
                {
                    return(hull);
                }
                else
                {
                    return(polygon);
                }
            }

            var cleaned = cleanPolygon2(polygon, clipperScale);

            if (cleaned != null && cleaned.Length > 1)
            {
                polygon = cleaned;
            }
            else
            {
                return(polygon);
            }
            // polygon to polyline
            var copy = polygon.slice(0);

            copy.push(copy[0]);
            // mark all segments greater than ~0.25 in to be kept
            // the PD simplification algo doesn't care about the accuracy of long lines, only the absolute distance of each point
            // we care a great deal
            for (i = 0; i < copy.Length - 1; i++)
            {
                var p1  = copy[i];
                var p2  = copy[i + 1];
                var sqd = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);
                if (sqd > fixedTolerance)
                {
                    p1.marked = true;
                    p2.marked = true;
                }
            }

            var simple = Simplify.simplify(copy, tolerance, true);

            // now a polygon again
            //simple.pop();
            simple.Points = simple.Points.Take(simple.Points.Count() - 1).ToArray();

            // could be dirty again (self intersections and/or coincident points)
            simple = cleanPolygon2(simple, clipperScale);

            // simplification process reduced poly to a line or point
            if (simple == null)
            {
                simple = polygon;
            }



            var offsets = polygonOffsetDeepNest(simple, inside ? -tolerance : tolerance, clipperScale);

            NFP        offset     = null;
            double     offsetArea = 0;
            List <NFP> holes      = new List <NFP>();

            for (i = 0; i < offsets.Length; i++)
            {
                var area = GeometryUtil.polygonArea(offsets[i]);
                if (offset == null || area < offsetArea)
                {
                    offset     = offsets[i];
                    offsetArea = area;
                }
                if (area > 0)
                {
                    holes.Add(offsets[i]);
                }
            }

            // mark any points that are exact
            for (i = 0; i < simple.Length; i++)
            {
                var seg = new NFP();
                seg.AddPoint(simple[i]);
                seg.AddPoint(simple[i + 1 == simple.Length ? 0 : i + 1]);

                var index1 = find(seg[0], polygon);
                var index2 = find(seg[1], polygon);

                if (index1 + 1 == index2 || index2 + 1 == index1 || (index1 == 0 && index2 == polygon.Length - 1) || (index2 == 0 && index1 == polygon.Length - 1))
                {
                    seg[0].exact = true;
                    seg[1].exact = true;
                }
            }
            var numshells = 4;

            NFP[] shells = new NFP[numshells];

            for (j = 1; j < numshells; j++)
            {
                var delta = j * (tolerance / numshells);
                delta = inside ? -delta : delta;
                var shell = polygonOffsetDeepNest(simple, delta, clipperScale);
                if (shell.Count() > 0)
                {
                    shells[j] = shell.First();
                }
                else
                {
                    //shells[j] = shell;
                }
            }

            if (offset == null)
            {
                return(polygon);
            }
            // selective reversal of offset
            for (i = 0; i < offset.Length; i++)
            {
                var o      = offset[i];
                var target = getTarget(o, simple, 2 * tolerance);

                // reverse point offset and try to find exterior points
                var test = clone(offset);
                test.Points[i] = new SvgPoint(target.X, target.Y);

                if (!exterior(test, polygon, inside))
                {
                    o.X = target.X;
                    o.Y = target.Y;
                }
                else
                {
                    // a shell is an intermediate offset between simple and offset
                    for (j = 1; j < numshells; j++)
                    {
                        if (shells[j] != null)
                        {
                            var shell = shells[j];
                            var delta = j * (tolerance / numshells);
                            target         = getTarget(o, shell, 2 * delta);
                            test           = clone(offset);
                            test.Points[i] = new SvgPoint(target.X, target.Y);
                            if (!exterior(test, polygon, inside))
                            {
                                o.X = target.X;
                                o.Y = target.Y;
                                break;
                            }
                        }
                    }
                }
            }

            // straighten long lines
            // a rounded rectangle would still have issues at this point, as the long sides won't line up straight

            var straightened = false;

            for (i = 0; i < offset.Length; i++)
            {
                var p1 = offset[i];
                var p2 = offset[i + 1 == offset.Length ? 0 : i + 1];

                var sqd = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);

                if (sqd < fixedTolerance)
                {
                    continue;
                }
                for (j = 0; j < simple.Length; j++)
                {
                    var s1 = simple[j];
                    var s2 = simple[j + 1 == simple.Length ? 0 : j + 1];

                    var sqds = (p2.X - p1.X) * (p2.X - p1.X) + (p2.Y - p1.Y) * (p2.Y - p1.Y);

                    if (sqds < fixedTolerance)
                    {
                        continue;
                    }

                    if ((GeometryUtil._almostEqual(s1.X, s2.X) || GeometryUtil._almostEqual(s1.Y, s2.Y)) && // we only really care about vertical and horizontal lines
                        GeometryUtil._withinDistance(p1, s1, 2 * tolerance) &&
                        GeometryUtil._withinDistance(p2, s2, 2 * tolerance) &&
                        (!GeometryUtil._withinDistance(p1, s1, curveTolerance / 1000) ||
                         !GeometryUtil._withinDistance(p2, s2, curveTolerance / 1000)))
                    {
                        p1.X         = s1.X;
                        p1.Y         = s1.Y;
                        p2.X         = s2.X;
                        p2.Y         = s2.Y;
                        straightened = true;
                    }
                }
            }

            //if(straightened){

            var Ac = ClipperHelper.ScaleUpPaths(offset, 10000000);
            var Bc = ClipperHelper.ScaleUpPaths(polygon, 10000000);

            var combined = new List <List <IntPoint> >();
            var clipper  = new ClipperLib.Clipper();

            clipper.AddPath(Ac.ToList(), ClipperLib.PolyType.ptSubject, true);
            clipper.AddPath(Bc.ToList(), ClipperLib.PolyType.ptSubject, true);

            // the line straightening may have made the offset smaller than the simplified
            if (clipper.Execute(ClipperLib.ClipType.ctUnion, combined, ClipperLib.PolyFillType.pftNonZero, ClipperLib.PolyFillType.pftNonZero))
            {
                double?largestArea = null;
                for (i = 0; i < combined.Count; i++)
                {
                    var n     = toNestCoordinates(combined[i].ToArray(), 10000000);
                    var sarea = -GeometryUtil.polygonArea(n);
                    if (largestArea == null || largestArea < sarea)
                    {
                        offset      = n;
                        largestArea = sarea;
                    }
                }
            }
            //}

            cleaned = cleanPolygon2(offset, clipperScale);
            if (cleaned != null && cleaned.Length > 1)
            {
                offset = cleaned;
            }

            // mark any points that are exact (for line merge detection)
            for (i = 0; i < offset.Length; i++)
            {
                var seg    = new SvgPoint[] { offset[i], offset[i + 1 == offset.Length ? 0 : i + 1] };
                var index1 = find(seg[0], polygon);
                var index2 = find(seg[1], polygon);
                if (index1 == null)
                {
                    index1 = 0;
                }
                if (index2 == null)
                {
                    index2 = 0;
                }
                if (index1 + 1 == index2 || index2 + 1 == index1 ||
                    (index1 == 0 && index2 == polygon.Length - 1) ||
                    (index2 == 0 && index1 == polygon.Length - 1))
                {
                    seg[0].exact = true;
                    seg[1].exact = true;
                }
            }

            if (!inside && holes != null && holes.Count > 0)
            {
                offset.Childrens = holes;
            }

            return(offset);
        }
コード例 #5
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
        // converts a polygon from normal float coordinates to integer coordinates used by clipper, as well as x/y -> X/Y
        private static IntPoint[] svgToClipper(NFP polygon, double clipperScale)
        {
            var d = ClipperHelper.ScaleUpPaths(polygon, clipperScale);

            return(d.ToArray());
        }
コード例 #6
0
ファイル: DeepNest.cs プロジェクト: fel88/GeomPad
 public static NFP[] Convolve(NFP A, NFP B)
 {
     return(new[] { ClipperHelper.MinkowskiSum(A, B, true, false) });
 }