コード例 #1
0
ファイル: mathsutilities.cs プロジェクト: luckysama/GMM2D
        public static Vector2 SVD_V(List <Vector2> pts)
        {
            Matrix22 ATA = new Matrix22();
            Vector2  direction;

            foreach (Vector2 pt in pts)
            {
                ATA.m00 += pt.x * pt.x;
                ATA.m10  = ATA.m01 += pt.x * pt.y;
                ATA.m11 += pt.y * pt.y;
            }

            ATA.UpdateEigens();
            ATA.eigenvector_0.Normalize();
            ATA.eigenvector_1.Normalize();

            if (ATA.eigenvalue_0 > ATA.eigenvalue_1)
            {
                direction = ATA.eigenvector_0;
            }
            else
            {
                direction = ATA.eigenvector_1;
            }

            return(direction);
        }
コード例 #2
0
ファイル: mathsutilities.cs プロジェクト: luckysama/GMM2D
        public Gaussian_2D(Random rand, Vector2 miu_init)
        {
            //init with zeros
            int rand_num = rand.Next(-10, 10);

            miu   = miu_init;
            Sigma = new Matrix22(800, rand_num, rand_num, 800);;
        }
コード例 #3
0
ファイル: mathsutilities.cs プロジェクト: luckysama/GMM2D
        public Matrix22 Inverse()
        {
            Matrix22 inv_M = new Matrix22();

            inv_M.m00 = m11 / Det();
            inv_M.m01 = -m01 / Det();
            inv_M.m10 = -m10 / Det();
            inv_M.m11 = m00 / Det();

            return(inv_M);
        }
コード例 #4
0
ファイル: primitivedetection.cs プロジェクト: luckysama/GMM2D
        public void Estimate(List <Vector2> pts)
        {
            // http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
            float a;
            float b;
            float x2;
            float y2;
            float uc;
            float vc;

            Matrix22 m1;
            Matrix22 m2;
            Matrix22 m3;

            float sum_x2  = 0;
            float sum_y2  = 0;
            float sum_xy  = 0;
            float sum_x3  = 0;
            float sum_y3  = 0;
            float sum_xy2 = 0;
            float sum_yx2 = 0;

            Vector2        origin       = Matrix.Mean(pts);
            List <Vector2> centered_pts = Matrix.Minus(pts, origin);

            foreach (Vector2 pt in centered_pts)
            {
                x2       = pt.x * pt.x;
                y2       = pt.y * pt.y;
                sum_x2  += x2;
                sum_y2  += y2;
                sum_xy  += pt.x * pt.y;
                sum_x3  += x2 * pt.x;
                sum_y3  += y2 * pt.y;
                sum_xy2 += pt.x * y2;
                sum_yx2 += pt.y * x2;
            }

            a = (sum_x3 + sum_xy2) / 2;
            b = (sum_y3 + sum_yx2) / 2;

            // Solve 2-dimensional linear equation using Cramer’s rule:
            // https://www.geeksforgeeks.org/system-linear-equations-three-variables-using-cramers-rule/
            m1 = new Matrix22(sum_x2, sum_xy, sum_xy, sum_y2);
            m2 = new Matrix22(a, sum_xy, b, sum_y2);
            m3 = new Matrix22(sum_x2, a, sum_xy, b);

            uc = m2.Det() / m1.Det();
            vc = m3.Det() / m1.Det();

            Center = new Vector2(uc, vc).Add(origin);
            R      = (float)Math.Sqrt(uc * uc + vc * vc + (sum_x2 + sum_y2) / centered_pts.Count);
        }
コード例 #5
0
ファイル: mathsutilities.cs プロジェクト: luckysama/GMM2D
        /// <summary>
        /// Generate a random gaussian.
        /// </summary>
        /// <param name="rand">
        /// Random operator
        /// </param>
        /// <param name="corner">
        /// Which corner to initialize
        /// </param>
        /// <param name="init">
        /// If true, initialize gaussians for prediction;
        /// If false, for input data
        /// </param>
        public Gaussian_2D(Random rand, int corner = 0, bool init = false)
        {
            //init input datapoints with random value
            int rand_num = rand.Next(-10, 10);

            if (!init && corner == 0)
            {
                miu   = new Vector2(rand.Next(100, 1700), rand.Next(50, 900));
                Sigma = new Matrix22(rand.Next(100, 900), rand_num,
                                     rand_num, rand.Next(100, 900));
            }
            //init new gaussians at one of the four corners
            else
            {
                switch (corner)
                {
                case 1:
                    miu = new Vector2(200, 200);
                    break;

                case 2:
                    miu = new Vector2(1700, 900);
                    break;

                case 3:
                    miu = new Vector2(200, 900);
                    break;

                case 4:
                    miu = new Vector2(1700, 200);
                    break;

                case 5:
                    miu = new Vector2(850, 200);
                    break;

                case 6:
                    miu = new Vector2(850, 900);
                    break;

                case 7:
                    miu = new Vector2(200, 1100);
                    break;

                case 8:
                    miu = new Vector2(1700, 1100);
                    break;
                }
                //init covariance
                Sigma = new Matrix22(2000, rand_num,
                                     rand_num, 2000);
            }
        }
コード例 #6
0
        /// <summary>
        /// Calculate multivariate normal probablity density function.
        /// Hardcoded for Vector2 and Matrix22 datatype.
        /// Use double precision to increase robustness.
        /// </summary>
        /// <param name="pt"></param>
        /// <param name="miu"></param>
        /// <param name="covariance"></param>
        /// <returns></returns>
        private static double MultiNormalPDF(Vector2 pt, Gaussian_2D gaussian)
        {
            Vector2  miu        = gaussian.miu;
            Matrix22 covariance = gaussian.Sigma;

            Vector2  x_minus_miu = pt.Minus(miu);
            Matrix22 inv_cov     = covariance.Inverse();

            //Break Matrix22 into two rows (Vector2) for dot product
            Vector2 row1 = new Vector2(inv_cov.m00, inv_cov.m01);
            Vector2 row2 = new Vector2(inv_cov.m10, inv_cov.m11);

            float dot_row1 = row1.Dot(x_minus_miu);
            float dot_row2 = row2.Dot(x_minus_miu);

            //Assemble two rows
            Vector2 temp_v = new Vector2(dot_row1, dot_row2);

            double numerator = Math.Exp(-x_minus_miu.Dot(temp_v) / 2);
            double denom     = 2 * Math.PI * Math.Sqrt(covariance.Det());

            return(numerator / denom);
        }
コード例 #7
0
ファイル: mathsutilities.cs プロジェクト: luckysama/GMM2D
 public Gaussian_2D()
 {
     //init with zeros
     miu   = new Vector2(0, 0);
     Sigma = new Matrix22(0, 0, 0, 0);
 }