public Core(int Nxp,int Nyp, int Nzp, int Ntm, double Bbeta, double Flux) { Nx = Nxp; Ny = Nyp; Nz = Nzp; Nt = Ntm; betagauge = (floattype)Bbeta; flux = (floattype)Flux; N = Nx * Ny * Nz * Nt; Nspace = Nx * Ny * Nz; string strforcompiler = "-D Nt=" + Nt.ToString() + " -D Nxyz=" + (Nx * Ny * Nz).ToString() + " -D Nxy=" + (Nx*Ny).ToString() + " -D Nx="+(Nx).ToString()+" -D Ny="+(Ny).ToString()+" -D Nz="+(Nz).ToString(); strforcompiler += typeof(floattype) == typeof(double) ? " -D floattype=double -D floattype2=double2 -D floattype4=double4" : " -D floattype=float -D floattype2=float2 -D floattype4=float4"; strforcompiler += " -D phi=" + flux.ToString().Replace(',', '.') + " -D KAPPA=" + kappa.ToString().Replace(',', '.'); string fp64support = "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"; Plocalsize = AdjustLocalSize(Nspace); Slocalsize = AdjustLocalSize(N / 2); XhermYlocalsize = AdjustLocalSize(4 * N); // Plocalsize = 16; Slocalsize = 16; PNumGroups = Nx * Ny * Nz / Plocalsize; SNumGroups = N/2 / Slocalsize; XhermYNumGroups = 4*4*N / XhermYlocalsize; BufferLength = N * 4 * 9 * 2 * sizeof(floattype); SeedBufLen = N * sizeof(Int32)/2 * 4; AllocBuffers(); openCLPlatform = OpenCL.GetPlatform(0); openCLDevices = openCLPlatform.QueryDevices(DeviceType.ALL); openCLContext = openCLPlatform.CreateDefaultContext(); openCLCQ = openCLContext.CreateCommandQueue(openCLDevices[0], CommandQueueProperties.PROFILING_ENABLE); MyKernelProgram = openCLContext.CreateProgramWithSource( (typeof(floattype)==typeof(double)?fp64support:"") + File.ReadAllText("MyKernel.cl")+File.ReadAllText("dirak_mul.cl")); try { MyKernelProgram.Build(openCLDevices, strforcompiler, null, IntPtr.Zero); } catch (OpenCLException) { string buildLog = MyKernelProgram.GetBuildLog(openCLDevices[0]); MessageBox.Show(buildLog, "Build error(64 bit debug sessions in vs2008 always fail like this - debug in 32 bit or use vs2010)"); // Application.Exit(); } MyKernelKernel = MyKernelProgram.CreateKernel("MyKernel"); PReductionKernel = MyKernelProgram.CreateKernel("PLoop"); SReductionKernel = MyKernelProgram.CreateKernel("CalcS"); DiralMulKernel = MyKernelProgram.CreateKernel("dirakMatrMul"); FillWithKernel = MyKernelProgram.CreateKernel("FillWith"); FillLinkWithKernel = MyKernelProgram.CreateKernel("FillLinkWith"); FillWithRandomKernel = MyKernelProgram.CreateKernel("FillWithRandom"); AXPYKernel = MyKernelProgram.CreateKernel("AXPY"); XhermYKernel = MyKernelProgram.CreateKernel("XhermY"); BackupLinkKernel = MyKernelProgram.CreateKernel("BackupLink"); RestoreLinkKernel = MyKernelProgram.CreateKernel("RestoreLink"); SeedMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), SeedBufLen, IntPtr.Zero); LinkMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), BufferLength, IntPtr.Zero); PGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * PNumGroups, IntPtr.Zero); PResMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero); SGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * SNumGroups, IntPtr.Zero); SResMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero); XhermYGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * 2*XhermYNumGroups, IntPtr.Zero); XhermYresMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * 2, IntPtr.Zero); XhermYrespointer = System.Runtime.InteropServices.Marshal.AllocHGlobal(floatsize * 2); SeedVectorMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), SeedVectorBuf.Length * sizeof(int), IntPtr.Zero); StorageMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), linksize, IntPtr.Zero); dSmem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero); dSpointer = System.Runtime.InteropServices.Marshal.AllocHGlobal(floatsize); MyKernelKernel.SetArg(0, (byte)EvenOdd); MyKernelKernel.SetArg(1, (floattype)betagauge); MyKernelKernel.SetArg(2, (floattype)flux); MyKernelKernel.SetArg(3, SeedMem); MyKernelKernel.SetArg(4, LinkMem); PReductionKernel.SetArg(0, LinkMem); PReductionKernel.SetArg(1, PGroupMem); PReductionKernel.SetArg(2, PResMem); IntPtr ptr = new IntPtr(Plocalsize * floatsize); PReductionKernel.SetArg(3, ptr, IntPtr.Zero); SReductionKernel.SetArg(0, LinkMem); SReductionKernel.SetArg(1, SGroupMem); SReductionKernel.SetArg(2, SResMem); IntPtr ptr1 = new IntPtr(Slocalsize * floatsize); SReductionKernel.SetArg(3, ptr1, IntPtr.Zero); XhermYKernel.SetArg(2, XhermYresMem); XhermYKernel.SetArg(3, XhermYGroupMem); XhermYKernel.SetArg(4, new IntPtr(XhermYlocalsize*floatsize*2),IntPtr.Zero); openCLCQ.EnqueueWriteBuffer(SeedMem, true, 0, SeedBufLen, ipseed); openCLCQ.EnqueueWriteBuffer(LinkMem, true, 0, BufferLength, ip); openCLCQ.EnqueueWriteBuffer(SeedVectorMem, true, 0, SeedVectorBuf.Length*sizeof(int), ipseedvector); rhat0 = new Vector(); //init BICGStab vectors phi = new Vector(); r0 = new Vector(); //rprev = new Vector(); pi = new Vector(); vi = new Vector(); t = new Vector(); s = new Vector(); // xprev = new Vector(); // vprev = new Vector(); // pprev = new Vector(); temp = new Vector(); ri = new Vector(); x = new Vector(); //for fermion update chi = new Vector(); CalculateS(); double s1 = S[0]; BackupLink(0, 0,1, 0, 1); CalculateS(); double s2 = S[0]; RestoreLink(0, 0, 1, 0, 1); CalculateS(); double s3 = S[0]; //MessageBox.Show(s1.ToString() + s2.ToString() + s3.ToString()); }
//y=MulD(x) void MulD(Vector x, Vector result) { DiralMulKernel.SetArg(0, LinkMem); DiralMulKernel.SetArg(1, x.buf); DiralMulKernel.SetArg(2, result.buf); openCLCQ.EnqueueNDRangeKernel(DiralMulKernel, 1, null, new int[1] { 4 * N }, null); openCLCQ.Finish(); openCLCQ.Flush(); // result.Updatearray(); }
Complex V1hermV2(Vector v1, Vector v2) { floattype[] c = new floattype[2]; for (int i = 0; i < 2; i++) { XhermYKernel.SetArg(0, v1.buf); XhermYKernel.SetArg(1, v2.buf); openCLCQ.EnqueueNDRangeKernel(XhermYKernel, 1, null, new int[1] { 4 * N }, new int[1] { XhermYlocalsize }); openCLCQ.Finish(); openCLCQ.Flush(); openCLCQ.EnqueueReadBuffer(XhermYresMem, true, 0, floatsize * 2, XhermYrespointer); System.Runtime.InteropServices.Marshal.Copy(XhermYrespointer, c, 0, 2); } return new Complex(c[0], c[1]); }
void AXPY(Complex a, Vector x, Vector y,Vector result) { AXPYKernel.SetArg(0, new floattype2(a.x,a.y)); AXPYKernel.SetArg(1, x.buf); AXPYKernel.SetArg(2, y.buf); AXPYKernel.SetArg(3, result.buf); openCLCQ.EnqueueNDRangeKernel(AXPYKernel, 1, null, new int[1] { 4 * N }, null); openCLCQ.Finish(); //result.Updatearray(); }