コード例 #1
0
        public void RunExample()
        {
            double[,] matrix1 = MatrixOperations.CreateRandomMatrix(2000, 2000);
            double[,] matrix2 = MatrixOperations.CreateRandomMatrix(2000, 2000);
            double[] vector1 = VectorOperations.CreateRandomVector(2000);
            double[,] result1, result2, result1b, result2b;
            double[] result1c, result2c;
            double   result1d, result2d;

            MatrixOperations.ParallelCalculations = false;
            Stopwatch watch1 = Stopwatch.StartNew();

            result1  = MatrixOperations.MatrixAddition(matrix1, matrix2);
            result1b = MatrixOperations.MatrixProduct(matrix1, matrix2);
            result1c = VectorOperations.MatrixVectorProduct(result1b, vector1);
            result1d = VectorOperations.VectorNorm2(result1c);
            long first = watch1.ElapsedMilliseconds;

            MatrixOperations.ParallelCalculations = true;
            Stopwatch watch2 = Stopwatch.StartNew();

            result2  = MatrixOperations.MatrixAddition(matrix1, matrix2);
            result2b = MatrixOperations.MatrixProduct(matrix1, matrix2);
            //result2 = MatrixOperations.TempVariable;
            result2c = VectorOperations.MatrixVectorProduct(result2b, vector1);
            result2d = VectorOperations.VectorNorm2(result2c);
            long second = watch2.ElapsedMilliseconds;

            string timeForCalculations = "Elapsed time for single threaded operation: " + first.ToString() + " -Result is:" + result1d + "\n" + "Elapsed time for multithreaded operation: " + second.ToString() + " -Result is:" + result2d;

            OnTimeElapsed(timeForCalculations);
        }
コード例 #2
0
        private double[] LoadControlledNR(double[] forceVector)
        {
            lambda = 1.0 / numberOfLoadSteps;
            double[] incrementDf    = VectorOperations.VectorScalarProductNew(forceVector, lambda);
            double[] solutionVector = new double[forceVector.Length];
            double[] incrementalExternalForcesVector = new double[forceVector.Length];
            double[] tempSolutionVector = new double[solutionVector.Length];
            double[] deltaU             = new double[solutionVector.Length];
            double[] internalForcesTotalVector;
            double[] dU;
            double[] residual;
            double   residualNorm;

            //Assembler.UpdateAccelerations(CalculateAccelerations(InitialValues.InitialAccelerationVector));

            for (int i = 0; i < numberOfLoadSteps; i++)
            {
                incrementalExternalForcesVector = VectorOperations.VectorVectorAddition(incrementalExternalForcesVector, incrementDf);
                Assembler.UpdateDisplacements(solutionVector);

                Assembler.UpdateAccelerations(explicitAcceleration.Values.Last());

                internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();

                double[,] tangentMatrix = CalculateHatMMatrix();
                dU             = LinearSolver.Solve(tangentMatrix, incrementDf);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, dU);

                Assembler.UpdateDisplacements(solutionVector);
                tangentMatrix             = CalculateHatMMatrix();
                internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();

                residual     = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                residualNorm = VectorOperations.VectorNorm2(residual);
                int iteration = 0;
                Array.Clear(deltaU, 0, deltaU.Length);
                while (residualNorm > tolerance && iteration < maxIterations)
                {
                    tangentMatrix      = CalculateHatMMatrix();
                    deltaU             = VectorOperations.VectorVectorSubtraction(deltaU, LinearSolver.Solve(tangentMatrix, residual));
                    tempSolutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                    Assembler.UpdateDisplacements(tempSolutionVector);

                    //Assembler.UpdateAccelerations(CalculateAccelerations(solutionVector));

                    internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
                    residual     = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                    residualNorm = VectorOperations.VectorNorm2(residual);
                    iteration    = iteration + 1;
                }
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                if (iteration >= maxIterations)
                {
                    Console.WriteLine("Newton-Raphson: Solution not converged at current iterations");
                }
            }

            return(solutionVector);
        }
コード例 #3
0
        private double[] LoadControlledNR(double[] forceVector)
        {
            double[] incrementDf    = VectorOperations.VectorScalarProductNew(forceVector, lambda);
            double[] solutionVector = localSolutionVector;
            double[] incrementalExternalForcesVector = new double[forceVector.Length];
            double[] tempSolutionVector = new double[solutionVector.Length];
            double[] deltaU             = new double[solutionVector.Length];
            double[] internalForcesTotalVector;
            double[] dU;
            double[] residual;
            double   residualNorm;

            for (int i = 0; i < numberOfLoadSteps; i++)
            {
                incrementalExternalForcesVector = VectorOperations.VectorVectorAddition(incrementalExternalForcesVector, incrementDf);
                discretization.UpdateDisplacements(solutionVector);
                internalForcesTotalVector = discretization.CreateTotalInternalForcesVector();
                double[,] stiffnessMatrix = discretization.CreateTotalStiffnessMatrix();
                //OnConvergenceResult("Newton-Raphson: Solution not converged at load step" + i);
                dU             = linearSolver.Solve(stiffnessMatrix, incrementDf);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, dU);
                residual       = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                residualNorm   = VectorOperations.VectorNorm2(residual);
                int iteration = 0;
                Array.Clear(deltaU, 0, deltaU.Length);
                while (residualNorm > Tolerance && iteration < MaxIterations)
                {
                    stiffnessMatrix    = discretization.CreateTotalStiffnessMatrix();
                    deltaU             = VectorOperations.VectorVectorSubtraction(deltaU, linearSolver.Solve(stiffnessMatrix, residual));
                    tempSolutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                    discretization.UpdateDisplacements(tempSolutionVector);
                    internalForcesTotalVector = discretization.CreateTotalInternalForcesVector();
                    residual     = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                    residualNorm = VectorOperations.VectorNorm2(residual);
                    if (residualNorm <= Tolerance)
                    {
                        OnConvergenceResult("Newton-Raphson: Load Step " + i + " - Solution converged at iteration " + iteration + " - Residual Norm = " + residualNorm);
                    }
                    else
                    {
                        OnConvergenceResult("Newton-Raphson: Load Step " + i + " - Solution not converged at iteration " + iteration + " - Residual Norm = " + residualNorm);
                    }
                    iteration = iteration + 1;
                    //(Application.Current.Windows[0] as MainWindow).LogTool.Text = "ok";
                    //OnConvergenceResult("Newton-Raphson: Solution not converged at load step" + iteration);
                }
                InternalForces.Add(i + 1, internalForcesTotalVector);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                Solutions.Add(i + 1, solutionVector);
                if (iteration >= MaxIterations)
                {
                    OnConvergenceResult("Newton-Raphson did not converge at Load Step " + i + ". Exiting solution.");
                    LoadStepConvergence.Add("Solution not converged.");
                    break;
                }
                LoadStepConvergence.Add("Solution converged.");
            }
            return(solutionVector);
        }
コード例 #4
0
        private double[] BiCGSTAB(double[,] stiffnessMatrix, double[] forceVector)
        {
            double[] solutionVector = new double[forceVector.Length];

            double[] xVector = new double[forceVector.Length];
            double[] pVector = new double[forceVector.Length];
            double[] vVector = new double[forceVector.Length];

            double[,] K = stiffnessMatrix;

            double[] bVector     = forceVector;
            double[] rVector     = VectorOperations.VectorVectorSubtraction(bVector, VectorOperations.MatrixVectorProduct(K, xVector));
            double[] r0hatVector = rVector;

            double rho0 = 1.0;
            double w    = 1.0;
            double a    = 1.0;
            double rho1 = VectorOperations.VectorDotProduct(r0hatVector, rVector);
            double b;

            double[] sVector;
            double[] tVector;
            int      iters = 100;
            double   converged;

            for (int i = 0; i < iters; i++)
            {
                b       = (rho1 / rho0) * (a / w);
                pVector = VectorOperations.VectorVectorAddition(rVector,
                                                                VectorOperations.VectorScalarProductNew(
                                                                    VectorOperations.VectorVectorSubtraction(pVector,
                                                                                                             VectorOperations.VectorScalarProductNew(vVector, w)), b));
                vVector = VectorOperations.MatrixVectorProduct(K, pVector);
                a       = rho1 / VectorOperations.VectorDotProduct(r0hatVector, vVector);
                sVector = VectorOperations.VectorVectorSubtraction(rVector,
                                                                   VectorOperations.VectorScalarProductNew(vVector, a));
                tVector = VectorOperations.MatrixVectorProduct(K, sVector);
                w       = VectorOperations.VectorDotProduct(tVector, sVector) / VectorOperations.VectorDotProduct(tVector, tVector);
                rho0    = rho1;
                rho1    = -w *VectorOperations.VectorDotProduct(r0hatVector, tVector);

                xVector = VectorOperations.VectorVectorAddition(xVector,
                                                                VectorOperations.VectorScalarProductNew(pVector, a));
                xVector = VectorOperations.VectorVectorAddition(xVector,
                                                                VectorOperations.VectorScalarProductNew(sVector, w));
                rVector = VectorOperations.VectorVectorSubtraction(sVector,
                                                                   VectorOperations.VectorScalarProductNew(tVector, w));
                converged = VectorOperations.VectorNorm2(rVector);
                if (i == iters | converged < 0.00000001)
                {
                    break;
                }
            }
            solutionVector = xVector;
            return(solutionVector);
        }
コード例 #5
0
        private double[] CalculateNormalUnitVector()
        {
            double X1 = Nodes[1].XCoordinate;
            double Y1 = Nodes[1].YCoordinate;
            double X2 = Nodes[2].XCoordinate;
            double Y2 = Nodes[2].YCoordinate;

            double[] normalVector       = new double[] { X2 - X1, Y2 - Y1 };
            double   normalVectorLength = VectorOperations.VectorNorm2(normalVector);

            double[] normalUnitVec = new double[] { normalVector[0] / normalVectorLength, normalVector[1] / normalVectorLength };
            return(normalUnitVec);
        }
コード例 #6
0
ファイル: ExplicitSolver.cs プロジェクト: malmenth/GFEC
        private double[] NewtonIterationsNewmark(double[] forceVector, int stepNumber, List <double> aConstants)
        {
            lambda = 1.0 / numberOfLoadSteps;
            //double[] incrementDf = VectorOperations.VectorScalarProductNew(forceVector, lambda);
            double[] solutionVector = new double[forceVector.Length];
            double[] deltaU         = new double[solutionVector.Length];
            double[] internalForcesTotalVector;
            double[] residual;
            double   residualNorm;

            double[] hatR;

            solutionVector = explicitSolution.Values.Last();

            Assembler.UpdateDisplacements(solutionVector);

            //Assembler.UpdateAccelerations(explicitAcceleration.Values.Last());
            hatR = CalculateHatRVectorNewmarkNL(stepNumber, aConstants, solutionVector);
            internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
            residual = VectorOperations.VectorVectorSubtraction(hatR, internalForcesTotalVector);
            residual = VectorOperations.VectorVectorSubtraction(forceVector, Assembler.CreateTotalInternalForcesVector());
            int iteration = 0;

            Array.Clear(deltaU, 0, deltaU.Length);

            for (int i = 0; i < maxIterations; i++)
            {
                double[,] tangentMatrix = CalculateHatKMatrixNewmark(aConstants);
                deltaU         = LinearSolver.Solve(tangentMatrix, residual);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                Assembler.UpdateDisplacements(solutionVector);
                //Assembler.UpdateAccelerations(CalculateAccelerations());
                hatR = CalculateHatRVectorNewmarkNL(stepNumber, aConstants, solutionVector);
                internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
                residual     = VectorOperations.VectorVectorSubtraction(hatR, internalForcesTotalVector);
                residualNorm = VectorOperations.VectorNorm2(residual);
                if (residualNorm < tolerance)
                {
                    break;
                }
                iteration = iteration + 1;
            }
            //Console.WriteLine(iteration);
            if (iteration >= maxIterations)
            {
                Console.WriteLine("Newton-Raphson: Solution not converged at current iterations");
            }

            return(solutionVector);
        }
コード例 #7
0
        private double[] LoadControlledNR(double[] forceVector)
        {
            double[] incrementDf    = VectorOperations.VectorScalarProductNew(forceVector, lambda);
            double[] solutionVector = new double[forceVector.Length];
            double[] incrementalExternalForcesVector = new double[forceVector.Length];
            double[] tempSolutionVector = new double[solutionVector.Length];
            double[] deltaU             = new double[solutionVector.Length];
            double[] internalForcesTotalVector;
            double[] dU;
            double[] residual;
            double   residualNorm;

            for (int i = 0; i < numberOfLoadSteps; i++)
            {
                incrementalExternalForcesVector = VectorOperations.VectorVectorAddition(incrementalExternalForcesVector, incrementDf);
                base.UpdateDisplacements(solutionVector);
                internalForcesTotalVector = base.CreateTotalInternalForcesVector();
                double[,] stiffnessMatrix = base.CreateTotalStiffnessMatrix();
                dU             = linearSolver.Solve(stiffnessMatrix, incrementDf);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, dU);
                residual       = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                residualNorm   = VectorOperations.VectorNorm2(residual);
                int iteration = 0;
                Array.Clear(deltaU, 0, deltaU.Length);
                while (residualNorm > tolerance && iteration < maxIterations)
                {
                    stiffnessMatrix    = base.CreateTotalStiffnessMatrix();
                    deltaU             = VectorOperations.VectorVectorSubtraction(deltaU, linearSolver.Solve(stiffnessMatrix, residual));
                    tempSolutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                    base.UpdateDisplacements(tempSolutionVector);
                    internalForcesTotalVector = base.CreateTotalInternalForcesVector();
                    residual     = VectorOperations.VectorVectorSubtraction(internalForcesTotalVector, incrementalExternalForcesVector);
                    residualNorm = VectorOperations.VectorNorm2(residual);
                    iteration    = iteration + 1;
                }
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                if (iteration >= maxIterations)
                {
                    Console.WriteLine("Newton-Raphson: Solution not converged at current iterations");
                }
            }

            return(solutionVector);
        }
コード例 #8
0
        private double[] StartNewtonIterations(double[] forceVector)
        {
            lambda = 1.0 / numberOfLoadSteps;

            double[] solutionVector     = new double[forceVector.Length];
            double[] tempSolutionVector = new double[solutionVector.Length];
            double[] deltaU             = new double[solutionVector.Length];
            double[] internalForcesTotalVector;
            double[] dU;
            double[] residual;
            double   residualNorm;

            discretization.UpdateDisplacements(solutionVector);
            residual = VectorOperations.VectorVectorSubtraction(forceVector, discretization.CreateTotalInternalForcesVector());
            int iteration = 0;

            Array.Clear(deltaU, 0, deltaU.Length);
            for (int i = 0; i < MaxIterations; i++)
            {
                double[,] tangentMatrix = discretization.CreateTotalStiffnessMatrix();
                deltaU         = linearSolver.Solve(tangentMatrix, residual);
                solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                discretization.UpdateDisplacements(solutionVector);

                internalForcesTotalVector = discretization.CreateTotalInternalForcesVector();
                residual     = VectorOperations.VectorVectorSubtraction(forceVector, internalForcesTotalVector);
                residualNorm = VectorOperations.VectorNorm2(residual);
                if (residualNorm < Tolerance)
                {
                    continue;
                }
                iteration = iteration + 1;
            }
            if (iteration >= MaxIterations)
            {
                Console.WriteLine("Newton-Raphson: Solution not converged at current iterations");
            }

            return(solutionVector);
        }
コード例 #9
0
ファイル: ContactNtS3D.cs プロジェクト: kostas91m/GFEC
        private double[] Project(double[] ksiVectorInitial)
        {
            int    maxIterations = 1000;
            double tol           = Math.Pow(10.0, -4.0);

            double[] deltaKsi = new double[2];
            double   norm     = new double();

            double[] ksiVector = ksiVectorInitial;
            double[] xUpdated  = xUpdatedVector();
            for (int i = 1; i <= maxIterations; i++)
            {
                double[] oldksiVector = ksiVector;
                Tuple <double[, ], double[, ], double[, ]> aMatrices = CalculatePositionMatrix(ksiVector[0], ksiVector[1]);
                List <double[]> dRho = SurfaceVectors(ksiVector[0], ksiVector[1]);
                double[]        f    = Calculate_f(dRho, aMatrices.Item1, xUpdated);
                double          e    = Calculate_e(aMatrices.Item1, xUpdated);//double e = Calculate_e(aMatrices.Item2, xUpdated);
                double[,] m = MetricTensor(dRho);
                double detm = MetricTensorDet(m);
                deltaKsi  = CalculateDeltaKsi(detm, m, f, e);
                ksiVector = VectorOperations.VectorVectorAddition(ksiVector, deltaKsi);//Iterations for the CPP?
                norm      = VectorOperations.VectorNorm2(VectorOperations.VectorVectorSubtraction(ksiVector, oldksiVector));
                if (norm <= tol)
                {
                    break;
                }
            }
            if (norm > tol)
            {
                throw new Exception("CPP not found in current iterations");
            }
            else
            {
                return(ksiVector);
            }
        }
コード例 #10
0
        public static Results RunStaticExample()
        {
            #region Structural
            IAssembly elementsAssembly = CreateAssembly();
            elementsAssembly.CreateElementsAssembly();
            elementsAssembly.ActivateBoundaryConditions = true;
            double[,] globalStiffnessMatrix             = elementsAssembly.CreateTotalStiffnessMatrix();

            //Gnuplot graphs
            ShowToGUI.PlotInitialGeometry(elementsAssembly);

            Dictionary <int, INode> initialNodes = elementsAssembly.Nodes;
            double[] initialXCoord = Assembly.NodalCoordinatesToVectors(initialNodes).Item1;
            double[] initialYCoord = Assembly.NodalCoordinatesToVectors(initialNodes).Item2;

            double[] Xvec1Initial = new double[totalNodes / 2];
            double[] Yvec1Initial = new double[totalNodes / 2];
            double[] Xvec2Initial = new double[totalNodes / 2];
            double[] Yvec2Initial = new double[totalNodes / 2];
            double[] Ζvec1Initial = Enumerable.Repeat(1.0, totalNodes / 2).ToArray();
            double[] Ζvec2Initial = Enumerable.Repeat(1.0, totalNodes / 2).ToArray();

            Array.Copy(initialXCoord, 0, Xvec1Initial, 0, totalNodes / 2);
            Array.Copy(initialYCoord, 0, Yvec1Initial, 0, totalNodes / 2);

            Array.Copy(initialXCoord, totalNodes / 2, Xvec2Initial, 0, totalNodes / 2);
            Array.Copy(initialYCoord, totalNodes / 2, Yvec2Initial, 0, totalNodes / 2);
            string pathForContour1 = @"C:\Users\Public\Documents\Total\1";
            string pathForContour2 = @"C:\Users\Public\Documents\Total\2";
            ExportToFile.CreateContourDataForMatlab(Xvec1Initial, Yvec1Initial, Ζvec1Initial, nodesInYCoor, nodesInXCoor, pathForContour1);
            ExportToFile.CreateContourDataForMatlab(Xvec2Initial, Yvec2Initial, Ζvec2Initial, nodesInYCoor, nodesInXCoor, pathForContour2);



            ///structuralSolution = new StaticSolver();
            structuralSolution.LinearScheme = new LUFactorization();
            //structuralSolution.NonLinearScheme = new LoadControlledNewtonRaphson();
            structuralSolution.NonLinearScheme.Tolerance         = 1e-4;
            structuralSolution.ActivateNonLinearSolver           = true;
            structuralSolution.NonLinearScheme.numberOfLoadSteps = 40;

            double[] externalForces3 = externalForcesStructuralVector;
            foreach (var dof in loadedStructuralDOFs)
            {
                externalForces3[dof - 1] = externalStructuralLoad;
            }



            double[] reducedExternalForces3 = BoundaryConditionsImposition.ReducedVector(externalForces3, elementsAssembly.BoundedDOFsVector);
            structuralSolution.AssemblyData = elementsAssembly;
            structuralSolution.Solve(reducedExternalForces3);
            double[] solvector3 = structuralSolution.GetSolution();
            elementsAssembly.UpdateDisplacements(solvector3);
            ShowToGUI.PlotFinalGeometry(elementsAssembly);
            double[] fullSolVector3                      = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(solvector3, elementsAssembly.BoundedDOFsVector);
            Dictionary <int, INode> finalNodes           = Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullSolVector3);
            double[] xFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item1;
            double[] yFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item2;
            Dictionary <int, double[]> allStepsSolutions = structuralSolution.GetAllStepsSolutions();

            Dictionary <int, Dictionary <int, double[]> > allStepsContactForces = new Dictionary <int, Dictionary <int, double[]> >();
            Dictionary <int, double[]> elementsInternalContactForcesVector;
            for (int i = 1; i <= allStepsSolutions.Count; i++)
            {
                elementsInternalContactForcesVector = new Dictionary <int, double[]>();
                elementsAssembly.UpdateDisplacements(allStepsSolutions[i]);
                for (int j = totalElements + 1; j <= totalElements + totalContactElements; j++)
                {
                    elementsInternalContactForcesVector[j] = elementsAssembly.ElementsAssembly[j].CreateInternalGlobalForcesVector();
                }
                allStepsContactForces[i] = elementsInternalContactForcesVector;
            }



            List <double[]> structuralSolutions = new List <double[]>();

            #endregion


            #region Thermal
            Dictionary <int, double[]> thermalSolutions = new Dictionary <int, double[]>();
            Dictionary <int, Dictionary <int, double[]> > allStepsHeatFluxes = new Dictionary <int, Dictionary <int, double[]> >();
            List <Dictionary <int, double> > contactContactivityForEachStep  = new List <Dictionary <int, double> >();
            for (int k = 1; k <= allStepsSolutions.Count; k++)
            {
                IAssembly elementsAssembly2 = CreateThermalAssembly();

                for (int j = totalElements + 1; j < totalElements + totalContactElements; j++)
                {
                    double[] contactForce = allStepsContactForces[k][j];
                    elementsAssembly2.ElementsProperties[j].ContactForceValue = VectorOperations.VectorNorm2(new double[] { contactForce[2], contactForce[3] });
                }

                elementsAssembly2.CreateElementsAssembly();
                elementsAssembly2.ActivateBoundaryConditions = true;
                double[,] globalStiffnessMatrix2             = elementsAssembly2.CreateTotalStiffnessMatrix();

                ISolver thermalSolution = new StaticSolver();
                thermalSolution.LinearScheme                      = new LUFactorization();
                thermalSolution.NonLinearScheme                   = new LoadControlledNewtonRaphson();
                thermalSolution.ActivateNonLinearSolver           = true;
                thermalSolution.NonLinearScheme.numberOfLoadSteps = 10;

                thermalSolution.AssemblyData = elementsAssembly2;
                double[] externalHeatFlux = externalHeatLoafVector;
                //externalHeatFlux[0] =  externalHeatLoad;
                //externalHeatFlux[15] = externalHeatLoad;
                //externalHeatFlux[30] = externalHeatLoad;
                //externalHeatFlux[45] = externalHeatLoad;
                //externalHeatFlux[60] = externalHeatLoad;

                foreach (var dof in loadedThermalDOFs)
                {
                    externalHeatFlux[dof - 1] = externalHeatLoad;
                }
                //for (int i = 61; i <= 75; i++)
                //{
                //    externalHeatFlux[61] = externalHeatLoad;
                //}
                double[] reducedExternalHeatFlux = BoundaryConditionsImposition.ReducedVector(externalHeatFlux, thermalSolution.AssemblyData.BoundedDOFsVector);
                thermalSolution.Solve(reducedExternalHeatFlux);
                double[] tempSol = thermalSolution.GetSolution();
                thermalSolutions.Add(k, tempSol);

                double[] fullThermalSolutionVector = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(tempSol, elementsAssembly2.BoundedDOFsVector);
                elementsAssembly2.UpdateDisplacements(fullThermalSolutionVector);
                Dictionary <int, double[]> elementsInternalHeatFluxesVector = new Dictionary <int, double[]>();
                for (int j = totalElements + 1; j <= totalElements + totalContactElements - 1; j++)
                {
                    elementsInternalHeatFluxesVector[j] = elementsAssembly2.ElementsAssembly[j].CreateInternalGlobalForcesVector();
                }
                allStepsHeatFluxes[k] = elementsInternalHeatFluxesVector;

                Dictionary <int, double> contactContactivity = AssemblyHelpMethods.RetrieveContactContactivity(thermalSolution.AssemblyData);
                contactContactivityForEachStep.Add(contactContactivity);
            }

            ExportToFile.ExportGeometryDataWithTemperatures(structuralSolution, thermalSolutions, thermalBoundaryConditions);
            ExportToFile.ExportCondactivityForAllLoadSteps(contactContactivityForEachStep);
            ExportToFile.ExportContactForcesForAllLoadSteps(allStepsContactForces);
            ExportToFile.ExportHeatFluxesForAllLoadSteps(allStepsHeatFluxes);

            int[]    thermalBoundCond   = thermalBoundaryConditions;
            double[] fullStructuralSol1 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[2], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol2 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[4], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol3 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[6], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol4 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[8], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol5 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[10], elementsAssembly.BoundedDOFsVector);
            double[] fullThermalSol1    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[1], thermalBoundCond);
            double[] fullThermalSol2    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[3], thermalBoundCond);
            double[] fullThermalSol3    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[5], thermalBoundCond);
            double[] fullThermalSol4    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[7], thermalBoundCond);
            double[] fullThermalSol5    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[9], thermalBoundCond);
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), fullThermalSol1, @"C:\Users\Public\Documents\Results1.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), fullThermalSol2, @"C:\Users\Public\Documents\Results2.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), fullThermalSol3, @"C:\Users\Public\Documents\Results3.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), fullThermalSol4, @"C:\Users\Public\Documents\Results4.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), fullThermalSol5, @"C:\Users\Public\Documents\Results5.dat");

            structuralSolutions.Add(fullStructuralSol1);
            structuralSolutions.Add(fullStructuralSol2);
            structuralSolutions.Add(fullStructuralSol3);
            structuralSolutions.Add(fullStructuralSol4);
            structuralSolutions.Add(fullStructuralSol5);



            double[] Xvec1Final = new double[totalNodes / 2];
            double[] Yvec1Final = new double[totalNodes / 2];
            double[] Xvec2Final = new double[totalNodes / 2];
            double[] Yvec2Final = new double[totalNodes / 2];
            double[] Ζvec1Final = new double[totalNodes / 2];
            double[] Ζvec2Final = new double[totalNodes / 2];

            Array.Copy(xFinalNodalCoor, 0, Xvec1Final, 0, totalNodes / 2);
            Array.Copy(yFinalNodalCoor, 0, Yvec1Final, 0, totalNodes / 2);
            Array.Copy(fullThermalSol4, 0, Ζvec1Final, 0, totalNodes / 2);
            Array.Copy(xFinalNodalCoor, totalNodes / 2, Xvec2Final, 0, totalNodes / 2);
            Array.Copy(yFinalNodalCoor, totalNodes / 2, Yvec2Final, 0, totalNodes / 2);
            Array.Copy(fullThermalSol4, totalNodes / 2, Ζvec2Final, 0, totalNodes / 2);

            List <HeatMapData> plots2 = new List <HeatMapData>();
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec1Final, Ycoordinates = Yvec1Final, Temperatures = Ζvec1Final
            });
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec2Final, Ycoordinates = Yvec2Final, Temperatures = Ζvec2Final
            });

            ShowToGUI.PlotHeatMap(plots2);

            string path  = @"C:\Users\Public\Documents\Total\1final";
            string path2 = @"C:\Users\Public\Documents\Total\2final";
            ExportToFile.CreateContourDataForMatlab(Xvec1Final, Yvec1Final, Ζvec1Final, nodesInYCoor, nodesInXCoor, path);
            ExportToFile.CreateContourDataForMatlab(Xvec2Final, Yvec2Final, Ζvec2Final, nodesInYCoor, nodesInXCoor, path2);

            //ExportToFile.ExportGeometryDataWithTemperatures(finalNodes, fullTempSol);

            GnuPlot.Close();

            while (true)
            {
                if (File.Exists(AppContext.BaseDirectory + "gnuplot.png") && new FileInfo(AppContext.BaseDirectory + "gnuplot.png").Length > 0)
                {
                    break;
                }
                Thread.Sleep(100);
            }
            GnuPlot.KillProcess();
            #endregion



            return(new Results()
            {
                NonlinearSolution = structuralSolutions, SelectedDOF = 2, SolutionType = "Nonlinear"
            });
        }
コード例 #11
0
        public static Results RunStaticExample()
        {
            #region Structural
            IAssembly elementsAssembly = CreateAssembly();
            elementsAssembly.CreateElementsAssembly();
            elementsAssembly.ActivateBoundaryConditions = true;
            double[,] globalStiffnessMatrix             = elementsAssembly.CreateTotalStiffnessMatrix();

            //Gnuplot graphs
            ShowToGUI.PlotInitialGeometry(elementsAssembly);

            ExportToFile.ExportMatlabInitialGeometry(elementsAssembly);


            //ISolver structuralSolution = new StaticSolver();
            structuralSolution.LinearScheme = new LUFactorization();
            //structuralSolution.NonLinearScheme = new LoadControlledNewtonRaphson();
            structuralSolution.ActivateNonLinearSolver           = true;
            structuralSolution.NonLinearScheme.numberOfLoadSteps = 10;
            //int[] BoundedDOFsVector2 = new int[] { 1, 2, 31, 32, 61, 62, 91, 92, 121, 122, 179, 180, 209, 210, 239, 240, 269, 270, 299, 300 };

            double[] externalForces3 = externalForcesStructuralVector;
            foreach (var dof in loadedStructuralDOFs)
            {
                externalForces3[dof] = externalStructuralLoad;
            }
            //externalForces3[135] = externalStructuralLoad;
            //externalForces3[137] = externalStructuralLoad;
            //externalForces3[139] = externalStructuralLoad;
            //externalForces3[141] = externalStructuralLoad;
            //externalForces3[143] = externalStructuralLoad;
            //externalForces3[145] = externalStructuralLoad;
            //externalForces3[147] = externalStructuralLoad;
            //externalForces3[149] = externalStructuralLoad;


            double[] reducedExternalForces3 = BoundaryConditionsImposition.ReducedVector(externalForces3, elementsAssembly.BoundedDOFsVector);
            structuralSolution.AssemblyData = elementsAssembly;
            structuralSolution.Solve(reducedExternalForces3);
            double[] solvector3 = structuralSolution.GetSolution();
            elementsAssembly.UpdateDisplacements(solvector3);
            //ShowToGUI.PlotFinalGeometry(elementsAssembly);

            double[] fullSolVector3 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(solvector3, elementsAssembly.BoundedDOFsVector);

            ExportToFile.ExportMatlabFinalGeometry(elementsAssembly, fullSolVector3);
            Dictionary <int, INode> finalNodes           = Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullSolVector3);
            double[] xFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item1;
            double[] yFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item2;
            Dictionary <int, double[]> allStepsSolutions = structuralSolution.GetAllStepsSolutions();

            Dictionary <int, Dictionary <int, double[]> > allStepsContactForces = new Dictionary <int, Dictionary <int, double[]> >();
            Dictionary <int, double[]> elementsInternalContactForcesVector;
            for (int i = 1; i <= allStepsSolutions.Count; i++)
            {
                elementsInternalContactForcesVector = new Dictionary <int, double[]>();
                elementsAssembly.UpdateDisplacements(allStepsSolutions[i]);
                for (int j = 113; j <= 120; j++)
                {
                    elementsInternalContactForcesVector[j] = elementsAssembly.ElementsAssembly[j].CreateInternalGlobalForcesVector();
                }
                allStepsContactForces[i] = elementsInternalContactForcesVector;
            }



            //    double[] solVector2 = new double[280];
            List <double[]> structuralSolutions = new List <double[]>();
            //    int[] BoundedDOFsVector = new int[] { 1, 2, 31, 32, 61, 62, 91, 92, 121, 122, 179, 180, 209, 210, 239, 240, 269, 270, 299, 300 };
            //    double[] externalForces2 = new double[300];
            //    for (int i = 1; i <= 5; i++)
            //    {
            //        structuralSolution.NonLinearScheme = new LoadControlledNewtonRaphson(solVector2);
            //        externalForces2[135] = -10000.0 * i;
            //        externalForces2[137] = -10000.0 * i;
            //        externalForces2[139] = -10000.0 * i;
            //        externalForces2[141] = -10000.0 * i;
            //        externalForces2[143] = -10000.0 * i;
            //        externalForces2[145] = -10000.0 * i;
            //        externalForces2[147] = -10000.0 * i;
            //        externalForces2[149] = -10000.0 * i;
            //        double[] reducedExternalForces2 = BoundaryConditionsImposition.ReducedVector(externalForces2, BoundedDOFsVector);
            //        structuralSolution.AssemblyData = elementsAssembly;
            //        structuralSolution.Solve(reducedExternalForces2);
            //        solVector2 = structuralSolution.GetSolution();
            //        structuralSolutions.Add(solVector2);
            //    }
            //    Dictionary<int, double[]> intForces = structuralSolution.GetInternalForces();
            //    Dictionary<int, double[]> elementInternalForces = elementsAssembly.GetElementsInternalForces(structuralSolutions[0]);
            //    List<string> elementTypes = elementsAssembly.GetElementsType();
            //    double[] completeFinalSolutionVector = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(solVector2, BoundedDOFsVector);
            //    Dictionary<int, INode> finalNodesList = new Dictionary<int, INode>();
            //    finalNodesList = Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, completeFinalSolutionVector);
            #endregion


            #region Thermal
            List <double[]> thermalSolutions = new List <double[]>();
            for (int k = 1; k <= allStepsSolutions.Count; k++)
            {
                IAssembly elementsAssembly2 = CreateThermalAssembly();

                for (int j = 113; j < 120; j++)
                {
                    double[] contactForce = allStepsContactForces[k][j];
                    elementsAssembly2.ElementsProperties[j].ContactForceValue = VectorOperations.VectorNorm2(new double[] { contactForce[2], contactForce[3] });
                }

                elementsAssembly2.CreateElementsAssembly();
                elementsAssembly2.ActivateBoundaryConditions = true;
                double[,] globalStiffnessMatrix2             = elementsAssembly2.CreateTotalStiffnessMatrix();

                ISolver thermalSolution = new StaticSolver();
                thermalSolution.LinearScheme                      = new LUFactorization();
                thermalSolution.NonLinearScheme                   = new LoadControlledNewtonRaphson();
                thermalSolution.ActivateNonLinearSolver           = true;
                thermalSolution.NonLinearScheme.numberOfLoadSteps = 10;

                thermalSolution.AssemblyData = elementsAssembly2;
                double[] externalHeatFlux = externalHeatLoafVector;
                //externalHeatFlux[0] =  externalHeatLoad;
                //externalHeatFlux[15] = externalHeatLoad;
                //externalHeatFlux[30] = externalHeatLoad;
                //externalHeatFlux[45] = externalHeatLoad;
                //externalHeatFlux[60] = externalHeatLoad;

                foreach (var dof in loadedThermalDOFs)
                {
                    externalHeatFlux[dof] = externalHeatLoad;
                }
                //for (int i = 61; i <= 75; i++)
                //{
                //    externalHeatFlux[61] = externalHeatLoad;
                //}
                double[] reducedExternalHeatFlux = BoundaryConditionsImposition.ReducedVector(externalHeatFlux, thermalSolution.AssemblyData.BoundedDOFsVector);
                thermalSolution.Solve(reducedExternalHeatFlux);
                double[] tempSol = thermalSolution.GetSolution();
                thermalSolutions.Add(tempSol);
            }

            int[]    thermalBoundCond   = thermalBoundaryConditions;
            double[] fullStructuralSol1 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[2], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol2 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[4], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol3 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[6], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol4 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[8], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol5 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[10], elementsAssembly.BoundedDOFsVector);
            double[] fullThermalSol1    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[1], thermalBoundCond);
            double[] fullThermalSol2    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[3], thermalBoundCond);
            double[] fullThermalSol3    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[5], thermalBoundCond);
            double[] fullThermalSol4    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[7], thermalBoundCond);
            double[] fullThermalSol5    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[9], thermalBoundCond);
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), fullThermalSol1, @"C:\Users\Public\Documents\Results1.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), fullThermalSol2, @"C:\Users\Public\Documents\Results2.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), fullThermalSol3, @"C:\Users\Public\Documents\Results3.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), fullThermalSol4, @"C:\Users\Public\Documents\Results4.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), fullThermalSol5, @"C:\Users\Public\Documents\Results5.dat");



            //double[] temperatures = new double[135];

            //int[] BoundedDOFsVectorForHeat = new int[] { 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165 };
            //for (int i = 1; i <= 5; i++)
            //{
            //    thermalSolution.NonLinearScheme = new LoadControlledNewtonRaphson(temperatures);
            //    double[] externalHeatFlux = new double[150];
            //    double[] reducedExternalHeatFlux = BoundaryConditionsImposition.ReducedVector(externalHeatFlux, BoundedDOFsVectorForHeat);
            //    thermalSolution.AssemblyData = elementsAssembly2;
            //    thermalSolution.Solve(reducedExternalHeatFlux);
            //    temperatures = thermalSolution.GetSolution();
            //    thermalSolutions.Add(temperatures);
            //}
            //List<double> X = new List<double>();
            //List<double> Y = new List<double>();
            //double[] fullTempSol = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(tempSol, thermalSolution.AssemblyData.BoundedDOFsVector);
            //double[] Z = fullTempSol;//thermalSolutions[4];
            //foreach (var node in elementsAssembly2.Nodes)
            //{
            //    X.Add(node.Value.XCoordinate);
            //    Y.Add(node.Value.YCoordinate);

            //}
            //double[] Xvec = X.ToArray();
            //double[] Yvec = Y.ToArray();


            //double[] Xvec1 = new double[75];
            //double[] Yvec1 = new double[75];
            //double[] Zvec1 = new double[75];
            //double[] Xvec2 = new double[75];
            //double[] Yvec2 = new double[75];
            //double[] Zvec2 = new double[75];
            //Array.Copy(Xvec, 75, Xvec2, 0, 75);
            //Array.Copy(Yvec, 75, Yvec2, 0, 75);
            //Array.Copy(Z, 75, Zvec2, 0, 75);
            //Array.Copy(Xvec, 0, Xvec1, 0, 75);
            //Array.Copy(Yvec, 0, Yvec1, 0, 75);
            //Array.Copy(Z, 0, Zvec1, 0, 75);
            //GnuPlot.Set("terminal png size 500, 300");
            //GnuPlot.Set("output 'gnuplot.png'");

            //GnuPlot.HoldOn();
            //GnuPlot.Set("cbrange[0:20.0]");
            //GnuPlot.Set("palette defined(0 \"blue\", 1 \"red\")");
            //GnuPlot.Set("pm3d");
            //GnuPlot.Set("dgrid3d");
            //GnuPlot.Set("view map");
            //GnuPlot.SPlot(Xvec1, Yvec1, Zvec1);
            //GnuPlot.SPlot(Xvec2, Yvec2, Zvec2);
            //GnuPlot.Set("output");
            //List<HeatMapData> plots = new List<HeatMapData>();
            //plots.Add(new HeatMapData() { Xcoordinates = Xvec1, Ycoordinates = Yvec1, Temperatures = Zvec1 });
            //plots.Add(new HeatMapData() { Xcoordinates = Xvec2, Ycoordinates = Yvec2, Temperatures = Zvec2 });
            ////ShowToGUI.PlotHeatMap(plots);

            double[] Xvec1Final = new double[75];
            double[] Yvec1Final = new double[75];
            double[] Xvec2Final = new double[75];
            double[] Yvec2Final = new double[75];
            double[] Ζvec1Final = new double[75];
            double[] Ζvec2Final = new double[75];

            Array.Copy(xFinalNodalCoor, 0, Xvec1Final, 0, 75);
            Array.Copy(yFinalNodalCoor, 0, Yvec1Final, 0, 75);
            Array.Copy(fullThermalSol4, 0, Ζvec1Final, 0, 75);
            Array.Copy(xFinalNodalCoor, 75, Xvec2Final, 0, 75);
            Array.Copy(yFinalNodalCoor, 75, Yvec2Final, 0, 75);
            Array.Copy(fullThermalSol4, 75, Ζvec2Final, 0, 75);

            List <HeatMapData> plots2 = new List <HeatMapData>();
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec1Final, Ycoordinates = Yvec1Final, Temperatures = Ζvec1Final
            });
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec2Final, Ycoordinates = Yvec2Final, Temperatures = Ζvec2Final
            });
            //GnuPlot.HoldOn();
            //GnuPlot.Set("pm3d");
            //GnuPlot.Set("dgrid3d");
            //GnuPlot.Set("view map");
            //GnuPlot.SPlot(new double[] { -1.0, 2.0, 1.0, -1.0}, new double[] { 1.0, 2.0, -1.0, 1.0 }, new double[] { 2, 1, 3, 2 });
            ////GnuPlot.SPlot(new double[] { -1.0, 1.0, 3.0 }, new double[] { 2.0, 2.0, -1.0 }, new double[] { 5, 4, 9 });
            ////GnuPlot.Plot(Xvec2Final, Yvec2Final);
            ShowToGUI.PlotHeatMap(plots2);

            string path  = @"C:\Users\Public\Documents\Total\1final";
            string path2 = @"C:\Users\Public\Documents\Total\2final";
            ExportToFile.CreateContourDataForMatlab(Xvec1Final, Yvec1Final, Ζvec1Final, 5, 15, path);
            ExportToFile.CreateContourDataForMatlab(Xvec2Final, Yvec2Final, Ζvec2Final, 5, 15, path2);

            //ExportToFile.ExportGeometryDataWithTemperatures(finalNodes, fullTempSol);

            GnuPlot.Close();

            while (true)
            {
                if (File.Exists(AppContext.BaseDirectory + "gnuplot.png") && new FileInfo(AppContext.BaseDirectory + "gnuplot.png").Length > 0)
                {
                    break;
                }
                Thread.Sleep(100);
            }
            GnuPlot.KillProcess();
            #endregion



            structuralSolutions.Add(fullStructuralSol1);
            structuralSolutions.Add(fullStructuralSol2);
            structuralSolutions.Add(fullStructuralSol3);
            structuralSolutions.Add(fullStructuralSol4);
            structuralSolutions.Add(fullStructuralSol5);
            diagramData.ShowResults(new Results()
            {
                NonlinearSolution = structuralSolutions, SelectedDOF = 2, SolutionType = "Nonlinear"
            });



            return(new Results()
            {
                NonlinearSolution = structuralSolutions, SelectedDOF = 2, SolutionType = "Nonlinear"
            });
        }
コード例 #12
0
        public static Results RunStaticExample()
        {
            #region Structural
            IAssembly elementsAssembly = CreateAssembly();
            elementsAssembly.CreateElementsAssembly();
            elementsAssembly.ActivateBoundaryConditions = true;
            double[,] globalStiffnessMatrix             = elementsAssembly.CreateTotalStiffnessMatrix();

            //Gnuplot graphs
            ShowToGUI.PlotInitialGeometry(elementsAssembly);

            Dictionary <int, INode> initialNodes = elementsAssembly.Nodes;
            double[] initialXCoord = Assembly.NodalCoordinatesToVectors(initialNodes).Item1;
            double[] initialYCoord = Assembly.NodalCoordinatesToVectors(initialNodes).Item2;

            double[] Xvec1Initial = new double[totalNodes / 2];
            double[] Yvec1Initial = new double[totalNodes / 2];
            double[] Xvec2Initial = new double[totalNodes / 2];
            double[] Yvec2Initial = new double[totalNodes / 2];
            double[] Ζvec1Initial = Enumerable.Repeat(1.0, totalNodes / 2).ToArray();
            double[] Ζvec2Initial = Enumerable.Repeat(1.0, totalNodes / 2).ToArray();

            Array.Copy(initialXCoord, 0, Xvec1Initial, 0, totalNodes / 2);
            Array.Copy(initialYCoord, 0, Yvec1Initial, 0, totalNodes / 2);

            Array.Copy(initialXCoord, totalNodes / 2, Xvec2Initial, 0, totalNodes / 2);
            Array.Copy(initialYCoord, totalNodes / 2, Yvec2Initial, 0, totalNodes / 2);
            //string pathForContour1 = @"C:\Users\Public\Documents\Total\1";
            //string pathForContour2 = @"C:\Users\Public\Documents\Total\2";
            //ExportToFile.CreateContourDataForMatlab(Xvec1Initial, Yvec1Initial, Ζvec1Initial, nodesInYCoor, nodesInXCoor, pathForContour1);
            //ExportToFile.CreateContourDataForMatlab(Xvec2Initial, Yvec2Initial, Ζvec2Initial, nodesInYCoor, nodesInXCoor, pathForContour2);
            //ISolver structuralSolution = new StaticSolver();
            structuralSolution.LinearScheme = new PCGSolver();
            //structuralSolution.NonLinearScheme = new LoadControlledNewtonRaphson();
            //structuralSolution.NonLinearScheme.Tolerance = 1e-5;
            structuralSolution.NonLinearScheme.Tolerance = 0.00001;
            //structuralSolution.NonLinearScheme.MaxIterations = 100;
            structuralSolution.ActivateNonLinearSolver           = true;
            structuralSolution.NonLinearScheme.numberOfLoadSteps = 20;

            double[] externalForces3 = externalForcesStructuralVector;
            foreach (var dof in loadedStructuralDOFs)
            {
                if (dof == loadDof1 | dof == LoadDof2)
                {
                    externalForces3[dof - 1] = externalStructuralLoad / 2;
                }
                else
                {
                    externalForces3[dof - 1] = externalStructuralLoad;
                }
            }
            double[] reducedExternalForces3 = BoundaryConditionsImposition.ReducedVector(externalForces3, elementsAssembly.BoundedDOFsVector);
            structuralSolution.AssemblyData = elementsAssembly;
            structuralSolution.Solve(reducedExternalForces3);
            double[] solvector3 = structuralSolution.GetSolution();
            elementsAssembly.UpdateDisplacements(solvector3);
            ShowToGUI.PlotFinalGeometry(elementsAssembly);
            double[] fullSolVector3                      = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(solvector3, elementsAssembly.BoundedDOFsVector);
            Dictionary <int, INode> finalNodes           = Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullSolVector3);
            double[] xFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item1;
            double[] yFinalNodalCoor                     = Assembly.NodalCoordinatesToVectors(finalNodes).Item2;
            Dictionary <int, double[]> allStepsSolutions = structuralSolution.GetAllStepsSolutions();

            Dictionary <int, Dictionary <int, double[]> > allStepsContactForces = new Dictionary <int, Dictionary <int, double[]> >();
            Dictionary <int, Dictionary <int, double> >   allStepsContactDXs    = new Dictionary <int, Dictionary <int, double> >();
            Dictionary <int, Dictionary <int, double> >   allStepsContactDXs1   = new Dictionary <int, Dictionary <int, double> >();
            Dictionary <int, Dictionary <int, double> >   allStepsContactDXs2   = new Dictionary <int, Dictionary <int, double> >();
            Dictionary <int, Dictionary <int, INode> >    allstepsfinalNodes    = new Dictionary <int, Dictionary <int, INode> >();
            //Dictionary<int, Dictionary<int, INode>> PreviusStatefinalNodes = new Dictionary<int, Dictionary<int, INode>>();
            Dictionary <int, double[]> elementsInternalContactForcesVector;
            Dictionary <int, double>   Deltax;
            Dictionary <int, double>   Deltax1;
            Dictionary <int, double>   Deltax2;
            //double[] SolutionSum = new double[2 * totalNodes];
            double[] NodalX         = new double[totalNodes];
            double[] NodalY         = new double[totalNodes];
            int      upperNode      = new int();
            int      lowerLeftNode  = new int();
            int      lowerRightNode = new int();
            for (int i = 1; i <= allStepsSolutions.Count; i++)
            {
                elementsInternalContactForcesVector = new Dictionary <int, double[]>();
                Deltax  = new Dictionary <int, double>();
                Deltax1 = new Dictionary <int, double>();
                Deltax2 = new Dictionary <int, double>();
                //allstepsfinalNodes = new Dictionary<int, Dictionary<int, INode>>();
                double[] fullSolVectorSteps = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[i], elementsAssembly.BoundedDOFsVector);
                //SolutionSum = VectorOperations.VectorVectorAddition(SolutionSum, fullSolVectorSteps);
                allstepsfinalNodes[i] = Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullSolVectorSteps);
                elementsAssembly.UpdateDisplacements(allStepsSolutions[i]);
                NodalX = Assembly.NodalCoordinatesToVectors(allstepsfinalNodes[i]).Item1;
                NodalY = Assembly.NodalCoordinatesToVectors(allstepsfinalNodes[i]).Item2;
                for (int j = totalElements + 1; j <= totalElements + totalContactElements; j++)
                {
                    elementsInternalContactForcesVector[j] = elementsAssembly.ElementsAssembly[j].CreateInternalGlobalForcesVector();
                }
                upperNode      = nodesInXCoor - totalContactElements + 1;
                lowerLeftNode  = (nodesInXCoor + nodesInXCoor2) * nodesInYCoor - nodesInXCoor2 + 1;
                lowerRightNode = lowerLeftNode + 1;
                for (int j = totalElements + 1; j <= totalElements + totalContactElements; j += 2)
                {
                    Deltax[j]      = Math.Pow(Math.Pow(NodalX[lowerRightNode - 1] - NodalX[lowerLeftNode - 1], 2) + Math.Pow(NodalY[lowerRightNode - 1] - NodalY[lowerLeftNode - 1], 2), 0.5);
                    Deltax2[j]     = Math.Pow(Math.Pow(NodalX[lowerRightNode - 1] - NodalX[upperNode - 1], 2) + Math.Pow(NodalY[lowerRightNode - 1] - NodalY[upperNode - 1], 2), 0.5);
                    Deltax1[j]     = Math.Pow(Math.Pow(NodalX[upperNode - 1] - NodalX[lowerLeftNode - 1], 2) + Math.Pow(NodalY[upperNode - 1] - NodalY[lowerLeftNode - 1], 2), 0.5);
                    upperNode      = upperNode + 1;
                    Deltax[j + 1]  = Math.Pow(Math.Pow(NodalX[lowerRightNode - 1] - NodalX[lowerLeftNode - 1], 2) + Math.Pow(NodalY[lowerRightNode - 1] - NodalY[lowerLeftNode - 1], 2), 0.5);
                    Deltax2[j + 1] = Math.Pow(Math.Pow(NodalX[lowerRightNode - 1] - NodalX[upperNode - 1], 2) + Math.Pow(NodalY[lowerRightNode - 1] - NodalY[upperNode - 1], 2), 0.5);
                    Deltax1[j + 1] = Math.Pow(Math.Pow(NodalX[upperNode - 1] - NodalX[lowerLeftNode - 1], 2) + Math.Pow(NodalY[upperNode - 1] - NodalY[lowerLeftNode - 1], 2), 0.5);
                    lowerLeftNode  = lowerRightNode;
                    lowerRightNode = lowerRightNode + 1;
                    upperNode      = upperNode + 1;
                }
                allStepsContactForces[i] = elementsInternalContactForcesVector;
                allStepsContactDXs[i]    = Deltax;
                allStepsContactDXs1[i]   = Deltax1;
                allStepsContactDXs2[i]   = Deltax2;
            }
            List <double[]> structuralSolutions = new List <double[]>();

            #endregion
            #region Thermal
            List <double[]> thermalSolutions = new List <double[]>();
            //List<double[]> thermalSolutions2 = new List<double[]>();
            List <Dictionary <int, double> > contactContactivityForEachStep = new List <Dictionary <int, double> >();
            List <double[]> contactContactivityForEachStep2 = new List <double[]>();
            for (int k = 1; k <= allStepsSolutions.Count; k++)
            {
                IAssembly elementsAssembly2 = CreateThermalAssembly();

                for (int j = totalElements + 1; j <= totalElements + totalContactElements; j++)
                {
                    double[] contactForce = allStepsContactForces[k][j];
                    double   DX           = allStepsContactDXs[k][j];
                    double   DX1          = allStepsContactDXs1[k][j];
                    double   DX2          = allStepsContactDXs2[k][j];
                    //double ContactForceVar = Math.Pow(Math.Pow(VectorOperations.VectorNorm2(new double[] { contactForce[4], contactForce[5] }),2),0.5);
                    elementsAssembly2.ElementsProperties[j].ContactForceValue = VectorOperations.VectorNorm2(new double[] { contactForce[4], contactForce[5] });
                    elementsAssembly2.ElementsProperties[j].Dx  = DX;
                    elementsAssembly2.ElementsProperties[j].Dx1 = DX1;
                    elementsAssembly2.ElementsProperties[j].Dx2 = DX2;
                }

                elementsAssembly2.CreateElementsAssembly();
                elementsAssembly2.ActivateBoundaryConditions = true;
                double[,] globalStiffnessMatrix2             = elementsAssembly2.CreateTotalStiffnessMatrix();

                ISolver thermalSolution = new StaticSolver();
                thermalSolution.LinearScheme                      = new LUFactorization();
                thermalSolution.NonLinearScheme                   = new LoadControlledNewtonRaphson();
                thermalSolution.NonLinearScheme.Tolerance         = 1e-7;
                thermalSolution.NonLinearScheme.MaxIterations     = 100;
                thermalSolution.ActivateNonLinearSolver           = true;
                thermalSolution.NonLinearScheme.numberOfLoadSteps = 10;

                thermalSolution.AssemblyData = elementsAssembly2;
                double[] externalHeatFlux = externalHeatLoafVector;
                //externalHeatFlux[0] =  externalHeatLoad;
                //externalHeatFlux[15] = externalHeatLoad;
                //externalHeatFlux[30] = externalHeatLoad;
                //externalHeatFlux[45] = externalHeatLoad;
                //externalHeatFlux[60] = externalHeatLoad;

                foreach (var dof in loadedThermalDOFs)
                {
                    if ((dof == ThermalDof1 | dof == ThermalDof2))
                    {
                        externalHeatFlux[dof - 1] = -T0 * (cond / (6 * xIntervals * yIntervals)) * ((Math.Pow(xIntervals, 2) - 2 * Math.Pow(yIntervals, 2)) - (Math.Pow(xIntervals, 2) + Math.Pow(yIntervals, 2)));
                    }
                    else
                    {
                        externalHeatFlux[dof - 1] = -2 * T0 * (cond / (6 * xIntervals * yIntervals)) * ((Math.Pow(xIntervals, 2) - 2 * Math.Pow(yIntervals, 2)) - (Math.Pow(xIntervals, 2) + Math.Pow(yIntervals, 2)));
                    }
                }
                //for (int i = 61; i <= 75; i++)
                //{
                //    externalHeatFlux[61] = externalHeatLoad;
                //}
                double[] reducedExternalHeatFlux = BoundaryConditionsImposition.ReducedVector(externalHeatFlux, thermalSolution.AssemblyData.BoundedDOFsVector);
                thermalSolution.Solve(reducedExternalHeatFlux);
                Dictionary <int, double[]> IntHeatFlux = thermalSolution.GetInternalForces();
                //double [] HeatSolve= new double[totalNodes];
                //double[] value;
                ////double[] Values = new double[totalNodes];
                //for (int i = 1; i <= 10; i++)
                //{
                //    value = IntHeatFlux[i];
                //    thermalSolutions2.Add(value);
                //    //Values[i - 1] = Convert.ToDouble(value);
                //}
                //HeatSolve = VectorOperations.VectorVectorAddition(Values , externalHeatFlux);
                double[] tempSol = thermalSolution.GetSolution();
                elementsAssembly2.UpdateDisplacements(tempSol);
                //double[] contactContactivityVector = new double[totalContactElements];
                //Dictionary<int, double[]> allStepsSolutions2 = thermalSolution.GetAllStepsSolutions();
                thermalSolutions.Add(tempSol);
                //thermalSolutions2.Add(HeatSolve);
                Dictionary <int, double> contactContactivity = AssemblyHelpMethods.RetrieveContactContactivity(thermalSolution.AssemblyData);
                //    contactContactivityForEachStep.Add(contactContactivity);
                //    for (int i = 0; i <= totalContactElements - 1; i++)
                //    {
                //        contactContactivityVector[i] = contactContactivity[i + totalElements + 1];
                //    }
                //    contactContactivityForEachStep2.Add(contactContactivityVector);
            }
            int[] thermalBoundCond = thermalBoundaryConditions;
            //int[] thermalBoundCond2 = thermalBoundaryConditions2;
            double[] fullStructuralSol1 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[4], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol2 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[8], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol3 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[12], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol4 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[16], elementsAssembly.BoundedDOFsVector);
            double[] fullStructuralSol5 = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(allStepsSolutions[20], elementsAssembly.BoundedDOFsVector);
            double[] fullThermalSol1    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[3], thermalBoundCond);
            double[] fullThermalSol2    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[7], thermalBoundCond);
            double[] fullThermalSol3    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[11], thermalBoundCond);
            double[] fullThermalSol4    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[15], thermalBoundCond);
            double[] fullThermalSol5    = BoundaryConditionsImposition.CreateFullVectorFromReducedVector(thermalSolutions[19], thermalBoundCond);
            //double[] fullThermalSol6 = thermalSolutions2[19];
            //double[] fullThermalSol7 = thermalSolutions2[39];
            //double[] fullThermalSol8 = thermalSolutions2[59];
            //double[] fullThermalSol9 = thermalSolutions2[79];
            //double[] fullThermalSol10 = thermalSolutions2[99];
            //double[] FullcontactContactivity1 = contactContactivityForEachStep2[1];
            //double[] FullcontactContactivity2 = contactContactivityForEachStep2[3];
            //double[] FullcontactContactivity3 = contactContactivityForEachStep2[5];
            //double[] FullcontactContactivity4 = contactContactivityForEachStep2[7];
            //double[] FullcontactContactivity5 = contactContactivityForEachStep2[9];
            double[] FullStructuralSolution_1_Χ = new double[totalNodes];
            double[] FullStructuralSolution_1_Υ = new double[totalNodes];
            double[] FullStructuralSolution_2_Χ = new double[totalNodes];
            double[] FullStructuralSolution_2_Υ = new double[totalNodes];
            double[] FullStructuralSolution_3_Χ = new double[totalNodes];
            double[] FullStructuralSolution_3_Υ = new double[totalNodes];
            double[] FullStructuralSolution_4_Χ = new double[totalNodes];
            double[] FullStructuralSolution_4_Υ = new double[totalNodes];
            double[] FullStructuralSolution_5_Χ = new double[totalNodes];
            double[] FullStructuralSolution_5_Υ = new double[totalNodes];
            int      count = 1;
            for (int i = 1; i <= 2 * totalNodes - 1; i += 2)
            {
                FullStructuralSolution_1_Χ[count - 1] = fullStructuralSol1[i - 1];
                FullStructuralSolution_1_Υ[count - 1] = fullStructuralSol1[i];
                count += 1;
            }
            count = 1;
            for (int i = 1; i <= 2 * totalNodes - 1; i += 2)
            {
                FullStructuralSolution_2_Χ[count - 1] = fullStructuralSol2[i - 1];
                FullStructuralSolution_2_Υ[count - 1] = fullStructuralSol2[i];
                count += 1;
            }
            count = 1;
            for (int i = 1; i <= 2 * totalNodes - 1; i += 2)
            {
                FullStructuralSolution_3_Χ[count - 1] = fullStructuralSol3[i - 1];
                FullStructuralSolution_3_Υ[count - 1] = fullStructuralSol3[i];
                count += 1;
            }
            count = 1;
            for (int i = 1; i <= 2 * totalNodes - 1; i += 2)
            {
                FullStructuralSolution_4_Χ[count - 1] = fullStructuralSol4[i - 1];
                FullStructuralSolution_4_Υ[count - 1] = fullStructuralSol4[i];
                count += 1;
            }
            count = 1;
            for (int i = 1; i <= 2 * totalNodes - 1; i += 2)
            {
                FullStructuralSolution_5_Χ[count - 1] = fullStructuralSol5[i - 1];
                FullStructuralSolution_5_Υ[count - 1] = fullStructuralSol5[i];
                count += 1;
            }
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), FullStructuralSolution_1_Χ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res1_ux.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), FullStructuralSolution_2_Χ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res2_ux.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), FullStructuralSolution_3_Χ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res3_ux.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), FullStructuralSolution_4_Χ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res4_ux.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), FullStructuralSolution_5_Χ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res5_ux.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), FullStructuralSolution_1_Υ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res1_uy.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), FullStructuralSolution_2_Υ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res2_uy.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), FullStructuralSolution_3_Υ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res3_uy.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), FullStructuralSolution_4_Υ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res4_uy.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), FullStructuralSolution_5_Υ, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.00Mpa_Res5_uy.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), fullThermalSol1, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.000Mpa_Res1_temp.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), fullThermalSol2, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.000Mpa_Res2_temp.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), fullThermalSol3, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.000Mpa_Res3_temp.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), fullThermalSol4, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.000Mpa_Res4_temp.dat");
            ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), fullThermalSol5, @"C:\Users\Public\Documents\ThermalStructuralCNTsInAngle3_0.12L_20.000Mpa_Res5_temp.dat");
            //ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol1), fullThermalSol6, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.90L_0.100Mpa_Res6.dat");
            //ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol2), fullThermalSol7, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.90L_0.100Mpa_Res7.dat");
            //ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol3), fullThermalSol8, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.90L_0.100Mpa_Res8.dat");
            //ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol4), fullThermalSol9, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.90L_0.100Mpa_Res9.dat");
            //ExportToFile.ExportGeometryDataWithTemperatures(Assembly.CalculateFinalNodalCoordinates(elementsAssembly.Nodes, fullStructuralSol5), fullThermalSol10, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.90L_0.100Mpa_Res10.dat");
            //VectorOperations.PrintVectorToFile(fullThermalSol6, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_Res6.dat");
            //VectorOperations.PrintVectorToFile(fullThermalSol7, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_Res7.dat");
            //VectorOperations.PrintVectorToFile(fullThermalSol8, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_Res8.dat");
            //VectorOperations.PrintVectorToFile(fullThermalSol9, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_Res9.dat");
            //VectorOperations.PrintVectorToFile(fullThermalSol10, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_Res10.dat");

            //VectorOperations.PrintVectorToFile(FullcontactContactivity1, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_CC1.dat");
            //VectorOperations.PrintVectorToFile(FullcontactContactivity2, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_CC2.dat");
            //VectorOperations.PrintVectorToFile(FullcontactContactivity3, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_CC3.dat");
            //VectorOperations.PrintVectorToFile(FullcontactContactivity4, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_CC4.dat");
            //VectorOperations.PrintVectorToFile(FullcontactContactivity5, @"C:\Users\Public\Documents\CouplThermStructCNTs_0.30L_0.100Mpa_CC5.dat");
            double[] Xvec1Final = new double[totalNodes / 2];
            double[] Yvec1Final = new double[totalNodes / 2];
            double[] Xvec2Final = new double[totalNodes / 2];
            double[] Yvec2Final = new double[totalNodes / 2];
            double[] Ζvec1Final = new double[totalNodes / 2];
            double[] Ζvec2Final = new double[totalNodes / 2];

            Array.Copy(xFinalNodalCoor, 0, Xvec1Final, 0, totalNodes / 2);
            Array.Copy(yFinalNodalCoor, 0, Yvec1Final, 0, totalNodes / 2);
            Array.Copy(fullThermalSol4, 0, Ζvec1Final, 0, totalNodes / 2);
            Array.Copy(xFinalNodalCoor, totalNodes / 2, Xvec2Final, 0, totalNodes / 2);
            Array.Copy(yFinalNodalCoor, totalNodes / 2, Yvec2Final, 0, totalNodes / 2);
            Array.Copy(fullThermalSol4, totalNodes / 2, Ζvec2Final, 0, totalNodes / 2);

            List <HeatMapData> plots2 = new List <HeatMapData>();
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec1Final, Ycoordinates = Yvec1Final, Temperatures = Ζvec1Final
            });
            plots2.Add(new HeatMapData()
            {
                Xcoordinates = Xvec2Final, Ycoordinates = Yvec2Final, Temperatures = Ζvec2Final
            });

            ShowToGUI.PlotHeatMap(plots2);

            //string path = @"C:\Users\Public\Documents\Total\1final";
            //string path2 = @"C:\Users\Public\Documents\Total\2final";
            //ExportToFile.CreateContourDataForMatlab(Xvec1Final, Yvec1Final, Ζvec1Final, nodesInYCoor, nodesInXCoor, path);
            //ExportToFile.CreateContourDataForMatlab(Xvec2Final, Yvec2Final, Ζvec2Final, nodesInYCoor, nodesInXCoor, path2);

            //ExportToFile.ExportGeometryDataWithTemperatures(finalNodes, fullTempSol);

            GnuPlot.Close();

            while (true)
            {
                if (File.Exists(AppContext.BaseDirectory + "gnuplot.png") && new FileInfo(AppContext.BaseDirectory + "gnuplot.png").Length > 0)
                {
                    break;
                }
                Thread.Sleep(100);
            }
            GnuPlot.KillProcess();
            #endregion

            return(new Results()
            {
                NonlinearSolution = structuralSolutions, SelectedDOF = 2, SolutionType = "Nonlinear"
            });
        }
コード例 #13
0
        private double[] NewtonIterationsExplicit(int timeStep, double[] forceVector, double[,] tangentMatrix)
        {
            //lambda = 1.0 / numberOfLoadSteps;
            //double[] incrementDf = VectorOperations.VectorScalarProductNew(forceVector, lambda);
            double[] solutionVector = new double[forceVector.Length];
            double[] deltaU         = new double[solutionVector.Length];
            //double[] internalForcesTotalVector;
            double[] residual;
            double   residualNorm;

            double[] hatRPrevious;
            double[] hatRNext;

            solutionVector = explicitSolution.Values.Last();

            Assembler.UpdateDisplacements(solutionVector);

            Assembler.UpdateAccelerations(explicitAcceleration.Values.Last());
            hatRPrevious = CalculateHatRVectorNL(timeStep);
            hatRNext     = hatRPrevious;
            //internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
            //residual = VectorOperations.VectorVectorSubtraction(hatR, internalForcesTotalVector);
            residual = hatRPrevious;
            int iteration = 0;

            Array.Clear(deltaU, 0, deltaU.Length);

            for (int i = 0; i < maxIterations; i++)
            {
                if (i == 0)
                {
                    //deltaU = LinearSolver.Solve(tangentMatrix, residual);
                    //solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                    solutionVector = LinearSolver.Solve(tangentMatrix, residual);
                    Assembler.UpdateDisplacements(solutionVector);
                    //Assembler.UpdateAccelerations(CalculateAccelerations());
                    hatRNext = CalculateHatRVectorNL(timeStep);
                    //internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
                    residual     = VectorOperations.VectorVectorSubtraction(hatRNext, hatRPrevious);
                    residualNorm = VectorOperations.VectorNorm2(residual);
                    if (residualNorm < tolerance)
                    {
                        break;
                    }
                    iteration    = iteration + 1;
                    hatRPrevious = hatRNext;
                }
                else
                {
                    deltaU         = LinearSolver.Solve(tangentMatrix, residual);
                    solutionVector = VectorOperations.VectorVectorAddition(solutionVector, deltaU);
                    //solutionVector = LinearSolver.Solve(tangentMatrix, residual);
                    Assembler.UpdateDisplacements(solutionVector);
                    //Assembler.UpdateAccelerations(CalculateAccelerations());
                    hatRNext = CalculateHatRVectorNL(timeStep);
                    //internalForcesTotalVector = Assembler.CreateTotalInternalForcesVector();
                    residual     = VectorOperations.VectorVectorSubtraction(hatRNext, hatRPrevious);
                    residualNorm = VectorOperations.VectorNorm2(residual);
                    if (residualNorm < tolerance)
                    {
                        break;
                    }
                    iteration    = iteration + 1;
                    hatRPrevious = hatRNext;
                }
            }
            //Console.WriteLine(iteration);
            if (iteration >= maxIterations)
            {
                Console.WriteLine("Newton-Raphson: Solution not converged at current iterations");
            }

            return(solutionVector);
        }