コード例 #1
0
        public override a_Fuzzy_System Generate(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_generator_conf config)
        {
            a_Fuzzy_System result = Approximate;

            if (result.Count_Rulles_Databases == 0)
            {
                result.Init_Rules_everyone_with_everyone(config);
            }

            count_shrink = ((Term_shrink_and_rotate_conf)config).Число_параметров_для_уменьшения_термов;
            size_shrink  = ((Term_shrink_and_rotate_conf)config).Значение_уменьшения_термов;
            type_func    = ((Term_shrink_and_rotate_conf)config).Функция_принадлежности;
            count_slices = ((Term_shrink_and_rotate_conf)config).Количество_термов_для_каждого_признака;



            List <int> Varians_of_run_system = new List <int>();

            for (int i = 0; i < Approximate.Count_Vars; i++)
            {
                int count_terms_for_var = Approximate.Rulles_Database_Set[0].Terms_Set.FindAll(x => x.Number_of_Input_Var == i).Count;
                if (i < count_shrink)
                {
                    Varians_of_run_system.Add(count_terms_for_var - size_shrink);
                }
                else
                {
                    Varians_of_run_system.Add(count_terms_for_var);
                }
            }

            Varians_of_run_system.Sort();
            Type_Term_Func_Enum type_of_term = Approximate.Rulles_Database_Set[0].Terms_Set[0].Term_Func_Type;

            Generate_all_variant_in_pool(Varians_of_run_system);

            for (int i = 0; i < Pull_of_systems.Count; i++)
            {
                Approximate.Rulles_Database_Set.Clear();

                Approximate.Init_Rules_everyone_with_everyone(type_of_term, Pull_of_systems[i].ToArray());
                Systems_ready_to_test.Add(Approximate.Rulles_Database_Set[0]);
                errors_of_systems.Add(result.approx_Learn_Samples(0));
            }

            int best_index = errors_of_systems.IndexOf(errors_of_systems.Min());

            result.Rulles_Database_Set.Clear();
            result.Rulles_Database_Set.Add(Systems_ready_to_test[best_index]);
            Console.WriteLine(Pull_of_systems.Count());



            GC.Collect();
//            result.unlaid_protection_fix();
            return(result);
        }
コード例 #2
0
        public override a_Fuzzy_System TuneUpFuzzySystem(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_learn_algorithm_conf config)
        {
            a_Fuzzy_System result = Approximate;

            if (result.Count_Rulles_Databases == 0)
            {
                throw new System.FormatException("Что то не то с входными данными");
            }
            Optimize_Term_shrink_and_rotate_conf Config = config as Optimize_Term_shrink_and_rotate_conf;

            count_shrink = Config.Число_параметров_для_уменьшения_термов;
            size_shrink  = Config.Значение_уменьшения_термов;



            List <int> Varians_of_run_system = new List <int>();

            for (int i = 0; i < Approximate.Count_Vars; i++)
            {
                int count_terms_for_var = Approximate.Rulles_Database_Set[0].Terms_Set.FindAll(x => x.Number_of_Input_Var == i).Count;
                if (i < count_shrink)
                {
                    Varians_of_run_system.Add(count_terms_for_var - size_shrink);
                }
                else
                {
                    Varians_of_run_system.Add(count_terms_for_var);
                }
            }

            Varians_of_run_system.Sort();
            Type_Term_Func_Enum type_of_term = Approximate.Rulles_Database_Set[0].Terms_Set[0].Term_Func_Type;

            Generate_all_variant_in_pool(Varians_of_run_system);

            for (int i = 0; i < Pull_of_systems.Count; i++)
            {
                Approximate.Rulles_Database_Set.Clear();

                Approximate.Init_Rules_everyone_with_everyone(type_of_term, Pull_of_systems[i].ToArray());
                Systems_ready_to_test.Add(Approximate.Rulles_Database_Set[0]);
                errors_of_systems.Add(result.approx_Learn_Samples(0));
            }

            int best_index = errors_of_systems.IndexOf(errors_of_systems.Min());

            result.Rulles_Database_Set.Clear();
            result.Rulles_Database_Set.Add(Systems_ready_to_test[best_index]);
            Console.WriteLine(Pull_of_systems.Count());



//            result.unlaid_protection_fix();
            return(result);
        }
コード例 #3
0
        public override a_Fuzzy_System Generate(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_generator_conf config)
        {
            start_add_rules = Approximate.Count_Rulles_Databases;
            a_Fuzzy_System result = Approximate;

            if (result.Count_Rulles_Databases == 0)
            {
                result.Init_Rules_everyone_with_everyone(config);
            }



            Request_count_rules = ((Rulles_shrink_conf)config).Нужно_Правил;
            max_count_rules     = ((Rulles_shrink_conf)config).Максимально_Правил;
            count_slices        = ((Rulles_shrink_conf)config).Количество_термов_для_каждого_признака;
            min_count_rules     = ((Rulles_shrink_conf)config).Минимально_Правил;
            type_term           = ((Rulles_shrink_conf)config).Функция_принадлежности;

            int         count_of_swith_off    = ((Rulles_shrink_conf)config).Максимально_Правил - Request_count_rules;
            List <byte> Varians_of_run_system = new List <byte>();

            for (int i = 0; i < Approximate.Rulles_Database_Set[0].Rules_Database.Count; i++)
            {
                Varians_of_run_system.Add(1);
            }
            for (int i = 0; i < count_of_swith_off; i++)
            {
                Varians_of_run_system[i] = 0;
            }
            Generate_all_variant_in_pool(Varians_of_run_system);
            for (int i = 0; i < Pull_of_systems.Count; i++)
            {
                Knowlege_base_ARules temp_rules = new  Knowlege_base_ARules(result.Rulles_Database_Set[0], Pull_of_systems[i]);
                temp_rules.trim_not_used_Terms();

                result.Rulles_Database_Set.Add(temp_rules);
                result.unlaid_protection_fix(start_add_rules + i);
                errors_of_systems.Add(result.approx_Learn_Samples(start_add_rules + i));
            }

            int best_index            = errors_of_systems.IndexOf(errors_of_systems.Min());
            Knowlege_base_ARules best = result.Rulles_Database_Set[start_add_rules + best_index];

            result.Rulles_Database_Set.Clear();
            result.Rulles_Database_Set.Add(best);
            Console.WriteLine(Pull_of_systems.Count());



            GC.Collect();
//            result.unlaid_protection_fix();
            return(result);
        }
コード例 #4
0
        public override a_Fuzzy_System TuneUpFuzzySystem(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_learn_algorithm_conf config)
        {
            start_add_rules = Approximate.Count_Rulles_Databases;
            a_Fuzzy_System result = Approximate;

            if (result.Count_Rulles_Databases == 0)
            {
                throw new System.FormatException("Что то не то с входными данными");
            }



            Optimize_Rulles_shrink_conf Config = config as Optimize_Rulles_shrink_conf;

            Request_count_rules = ((Rulles_shrink_conf)config).Нужно_Правил;
            max_count_rules     = ((Rulles_shrink_conf)config).Максимально_Правил;
            min_count_rules     = ((Rulles_shrink_conf)config).Минимально_Правил;

            int         count_of_swith_off    = Config.Максимально_Правил - Request_count_rules;
            List <byte> Varians_of_run_system = new List <byte>();

            for (int i = 0; i < Approximate.Rulles_Database_Set[0].Rules_Database.Count; i++)
            {
                Varians_of_run_system.Add(1);
            }
            for (int i = 0; i < count_of_swith_off; i++)
            {
                Varians_of_run_system[i] = 0;
            }
            Generate_all_variant_in_pool(Varians_of_run_system);
            for (int i = 0; i < Pull_of_systems.Count; i++)
            {
                Knowlege_base_ARules temp_rules = new  Knowlege_base_ARules(result.Rulles_Database_Set[0], Pull_of_systems[i]);
                temp_rules.trim_not_used_Terms();

                result.Rulles_Database_Set.Add(temp_rules);
                result.unlaid_protection_fix(start_add_rules + i);
                errors_of_systems.Add(result.approx_Learn_Samples(start_add_rules + i));
            }

            int best_index            = errors_of_systems.IndexOf(errors_of_systems.Min());
            Knowlege_base_ARules best = result.Rulles_Database_Set[start_add_rules + best_index];

            result.Rulles_Database_Set.Clear();
            result.Rulles_Database_Set.Add(best);
            Console.WriteLine(Pull_of_systems.Count());



//            result.unlaid_protection_fix();
            return(result);
        }
コード例 #5
0
        public void constuct__and_add_the_Rule(List <Term> terms, a_Fuzzy_System FS)
        {
            ARule Result;

            int[] order_of_terms = new int[terms.Count()];
            for (int i = 0; i < terms.Count(); i++)
            {
                order_of_terms[i] = terms_set.Count;
                terms_set.Add(terms[i]);
            }
            double kons_Value = FS.Nearest_Approx(terms_set);

            Result = new ARule(terms_set, order_of_terms, kons_Value);
            arules_database.Add(Result);
        }
コード例 #6
0
        public override Fuzzy_system.Approx_Singletone.a_Fuzzy_System TuneUpFuzzySystem(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_learn_algorithm_conf conf)
        {
            count_iteration = ((Term_Config_PSO_Search_conf)conf).Количество_итераций;
            c1             = ((Term_Config_PSO_Search_conf)conf).Коэффициент_c1;
            c2             = ((Term_Config_PSO_Search_conf)conf).Коэффициент_c2;
            w              = 1;
            count_particle = ((Term_Config_PSO_Search_conf)conf).Особей_в_популяции;

            a_Fuzzy_System result = Approximate;

            Knowlege_base_ARules[] X  = new Knowlege_base_ARules[count_particle];
            Knowlege_base_ARules[] V  = new Knowlege_base_ARules[count_particle];
            Knowlege_base_ARules[] Pi = new Knowlege_base_ARules[count_particle];
            Knowlege_base_ARules   Pg = new Knowlege_base_ARules();

            double[] Errors    = new double[count_particle];
            double[] OldErrors = new double[count_particle];
            double   minError  = 0;
            Random   rnd       = new Random();

            for (int i = 0; i < count_particle; i++)
            {
                Knowlege_base_ARules temp_c_Rule = new Knowlege_base_ARules(result.Rulles_Database_Set[0]);
                X[i]         = temp_c_Rule;
                Errors[i]    = result.approx_Learn_Samples(0);
                OldErrors[i] = Errors[i];
                Pi[i]        = new Knowlege_base_ARules(X[i]);
                V[i]         = new Knowlege_base_ARules(X[i]);
                //
                for (int j = 0; j < V[i].Terms_Set.Count; j++)
                {
                    for (int k = 0; k < Member_Function.Count_Params_For_Term(V[i].Terms_Set[j].Term_Func_Type); k++)
                    {
                        if (i == 0)
                        {
                            V[i].Terms_Set[j].Parametrs[k] = 0;
                        }
                        else
                        {
                            V[i].Terms_Set[j].Parametrs[k] = rnd.NextDouble() - 0.5;
                        }
                    }
                    double[] bf = new double[V[i].all_conq_of_rules.Length];
                    for (int k = 0; k < V[i].all_conq_of_rules.Length; k++)
                    {
                        if (i == 0)
                        {
                            bf[k] = 1;
                        }
                        else
                        {
                            bf[k] = rnd.NextDouble() / 200;
                        }
                    }
                    V[i].all_conq_of_rules = bf;
                }
            }
            Pg       = new Knowlege_base_ARules(result.Rulles_Database_Set[0]);
            minError = Errors[0];
            for (int i = 0; i < count_iteration; i++)
            {
                for (int j = 0; j < count_particle; j++)
                {
                    w = 1 / (1 + Math.Exp(-(Errors[j] - OldErrors[j]) / 0.01));
                    for (int k = 0; k < X[j].Terms_Set.Count; k++)
                    {
                        for (int q = 0; q < Member_Function.Count_Params_For_Term(X[j].Terms_Set[k].Term_Func_Type); q++)
                        {
                            double bp = Pi[j].Terms_Set[k].Parametrs[q];
                            V[j].Terms_Set[k].Parametrs[q] = V[j].Terms_Set[k].Parametrs[q] * w + c1 * rnd.NextDouble() * (bp - X[j].Terms_Set[k].Parametrs[q]) +
                                                             c2 * rnd.NextDouble() * (Pg.Terms_Set[k].Parametrs[q] - X[j].Terms_Set[k].Parametrs[q]);
                            X[j].Terms_Set[k].Parametrs[q] += V[j].Terms_Set[k].Parametrs[q];
                        }
                    }
                    double[] bf  = new double[V[j].all_conq_of_rules.Length];
                    double[] bfw = new double[V[j].all_conq_of_rules.Length];
                    for (int k = 0; k < V[j].all_conq_of_rules.Length; k++)
                    {
                        bfw[k] = V[j].all_conq_of_rules[k] * w + c1 * rnd.NextDouble() * (Pi[j].all_conq_of_rules[k] - X[j].all_conq_of_rules[k]) +
                                 c2 * rnd.NextDouble() * (Pg.all_conq_of_rules[k] - X[j].all_conq_of_rules[k]);
                        double sw = X[j].all_conq_of_rules[k] + bfw[k];
                        if (sw > 0 && sw <= 2)
                        {
                            bf[k] = sw;
                        }
                        else
                        {
                            bf[k]  = X[j].all_conq_of_rules[k];
                            bfw[k] = V[j].all_conq_of_rules[k];
                        }
                    }
                    X[j].all_conq_of_rules = bf;
                    V[j].all_conq_of_rules = bfw;
                    double newError = 0;
                    result.Rulles_Database_Set.Add(X[j]);
                    int  temp_index = result.Rulles_Database_Set.Count - 1;
                    bool success    = true;
                    try
                    {
                        newError = result.approx_Learn_Samples(temp_index);
                    }
                    catch (Exception)
                    {
                        success = false;
                    }
                    result.Rulles_Database_Set.RemoveAt(temp_index);
                    if (success && (newError > Errors[j]))
                    {
                        OldErrors[j] = Errors[j];
                        Errors[j]    = newError;

                        Pi[j] = new Knowlege_base_ARules(X[j]);
                    }
                    if (minError < newError)
                    {
                        minError = newError;
                        Pg       = new Knowlege_base_ARules(X[j]);
                    }
                }
            }
            result.Rulles_Database_Set[0] = Pg;
            GC.Collect();
            return(result);
        }
コード例 #7
0
        public override Fuzzy_system.Approx_Singletone.a_Fuzzy_System TuneUpFuzzySystem(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_learn_algorithm_conf conf)
        {
            Mnk_lib.Mnk_class Mnk_me = new Mnk_lib.Mnk_class();

            double [,,] Extracted_rules  = extract_Rules(Approximate.Rulles_Database_Set[0]);
            double [,] Extracted_Samples = extract_Sample_table(Approximate.Learn_Samples_set);
            double [] Extracted_Samples_out = extract_Sample_table_Out(Approximate.Learn_Samples_set);
            int       count_rules           = Approximate.Count_Rules();
            int       count_samples         = Approximate.Learn_Samples_set.Count_Samples;
            int       count_Vars            = Approximate.Learn_Samples_set.Count_Vars;

            double []           New_consq = new double[count_rules];
            Type_Term_Func_Enum type_Func = Approximate.Rulles_Database_Set[0].Terms_Set[0].Term_Func_Type;
            int type_func = (int)type_Func;

            Mnk_me.mnk_R(Extracted_rules, count_rules, type_func, Extracted_Samples, Extracted_Samples_out, count_samples, count_Vars, out New_consq);

            a_Fuzzy_System Result = Approximate;

            double result_before = Result.approx_Learn_Samples(0);

            double [] Back_consq = Result.Rulles_Database_Set[0].all_conq_of_rules;
            Result.Rulles_Database_Set[0].all_conq_of_rules = New_consq;
            double result_after = Result.approx_Learn_Samples(0);

            if (result_before < result_after)
            {
                Result.Rulles_Database_Set[0].all_conq_of_rules = Back_consq;
            }
            GC.Collect();
            return(Result);
        }
コード例 #8
0
        public override a_Fuzzy_System Generate(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_generator_conf config)
        {
            Random         rand   = new Random();
            a_Fuzzy_System result = Approximate;

            if (result.Count_Rulles_Databases == 0)
            {
                Knowlege_base_ARules temp_rules = new Knowlege_base_ARules();
                result.Rulles_Database_Set.Add(temp_rules);
            }



            type_term    = ((Generator_Rulles_simple_random_conf)config).Функция_принадлежности;
            stable_terms = (int)((Generator_Rulles_simple_random_conf)config).Тип_Термов;
            count_rules  = ((Generator_Rulles_simple_random_conf)config).Количество_правил;


            for (int j = 0; j < count_rules; j++)
            {
                int[] order = new int[result.Count_Vars];
                Type_Term_Func_Enum temp_type_term;
                if (stable_terms == 0)
                {
                    temp_type_term = type_term;
                }
                else
                {
                    temp_type_term = Generator_type_term();
                }

                List <Term> temp_term_list = new List <Term>();
                for (int k = 0; k < result.Count_Vars; k++)
                {
                    double[] parametrs = new double[Member_Function.Count_Params_For_Term(temp_type_term)];

                    switch (temp_type_term)
                    {
                    case Type_Term_Func_Enum.Треугольник:
                        parametrs[0] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[1] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[2] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        Array.Sort(parametrs);
                        break;

                    case Type_Term_Func_Enum.Гауссоида: parametrs[0] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[1] = (rand.NextDouble() + 0.01) * 0.5 *
                                       (result.Learn_Samples_set.Attribute_Max(k) -
                                        result.Learn_Samples_set.Attribute_Min(k));
                        break;

                    case Type_Term_Func_Enum.Парабола: parametrs[0] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[1] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        Array.Sort(parametrs);
                        break;

                    case Type_Term_Func_Enum.Трапеция: parametrs[0] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[1] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[2] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));
                        parametrs[3] = result.Learn_Samples_set.Attribute_Min(k) + rand.NextDouble() * (result.Learn_Samples_set.Attribute_Max(k) - result.Learn_Samples_set.Attribute_Min(k));

                        Array.Sort(parametrs);

                        break;
                    }
                    Term temp_term = new Term(parametrs, temp_type_term, k);
                    result.Rulles_Database_Set[0].Terms_Set.Add(temp_term);
                    temp_term_list.Add(temp_term);
                    order[k] = result.Rulles_Database_Set[0].Terms_Set.Count - 1;
                }
                double approx_Value = result.Nearest_Approx(temp_term_list);
                ARule  temp_Rule    = new ARule(result.Rulles_Database_Set[0].Terms_Set, order, approx_Value);
                result.Rulles_Database_Set[0].Rules_Database.Add(temp_Rule);
            }



            result.unlaid_protection_fix();
            GC.Collect();
            return(result);
        }
コード例 #9
0
        public override Fuzzy_system.Approx_Singletone.a_Fuzzy_System TuneUpFuzzySystem(Fuzzy_system.Approx_Singletone.a_Fuzzy_System Approximate, Abstract_learn_algorithm_conf conf)
        {
            count_populate   = ((Es_Config)conf).Особей_в_популяции;
            count_child      = ((Es_Config)conf).Потомки;
            count_iterate    = ((Es_Config)conf).Количество_итераций;
            coef_t1          = ((Es_Config)conf).Коэффициент_t1;
            coef_t2          = ((Es_Config)conf).Коэффициент_t2;
            param_crossover  = ((Es_Config)conf).Вероятность_скрещивания;
            alg_cross        = ((Es_Config)conf).Алгоритм_Скрещивания;
            type_init        = ((Es_Config)conf).Алгоритм_Инициализации;
            count_Multipoint = ((Es_Config)conf).Точек_Скрещивания;
            type_mutate      = ((Es_Config)conf).Алгоритм_Мутации;
            b_ro             = ((Es_Config)conf).Изменение_РО;

            a_Fuzzy_System result   = Approximate;
            Population     main_pop = new Population(count_populate, count_child, result.Count_Vars, result.Learn_Samples_set);

            main_pop.init_first(result.Rulles_Database_Set[0], rand, type_init);
            for (int i = 0; i < count_iterate; i++)
            {
                double inparam = 0;
                switch (alg_cross)
                {
                case Individ.Alg_crossover.Унифицированный: inparam = param_crossover; break;

                case Individ.Alg_crossover.Многоточечный: inparam = count_Multipoint; break;
                }



                main_pop.select_parents_and_crossover(rand, alg_cross, inparam);
                main_pop.mutate_all(rand, coef_t1, coef_t2, type_mutate, b_ro);
                main_pop.union_parent_and_child();
                main_pop.Calc_Error(result);
                main_pop.select_global();
            }
            result.Rulles_Database_Set[0] = main_pop.get_best_database();
            GC.Collect();
            return(result);
        }