public TNeuralData(TNeuralData Data) { this.mqxB9tafd = Data.mqxB9tafd; this.XkLVodNhF = Data.mqxB9tafd; this.dRXrjBaeW = this.mqxB9tafd == 0 ? (double[]) null : new double[this.mqxB9tafd]; this.s9P8N17Q3 = this.XkLVodNhF == 0 ? (double[]) null : new double[this.XkLVodNhF]; for (int index = 0; index < this.mqxB9tafd; ++index) this.dRXrjBaeW[index] = Data.dRXrjBaeW[index]; for (int index = 0; index < this.XkLVodNhF; ++index) this.s9P8N17Q3[index] = Data.s9P8N17Q3[index]; }
public void TrainPerceptron() { this.x1tDaZE2v = false; int num1 = 0; int num2 = 0; int num3 = 0; label_1: do { do { for (int index = 0; index < this.fNBatch; ++index) { TNeuralData data = this.tD5M1LlFx.GetData(); this.fInput = data.Input; this.fTarget = data.Output; this.FeedForward(); this.ComputeError(); this.FeedBackward(); } this.Update(0); TPerceptron tperceptron = this; int num4 = tperceptron.fNPattern + this.fNBatch; tperceptron.fNPattern = num4; num1 += this.fNBatch; num2 += this.fNBatch; if (this.x1tDaZE2v) { Console.WriteLine(""); return; } else if (this.fSMethod == EStoppingMethod.PatternNumber && (double)num1 >= this.fSParameter) { Console.WriteLine("", this.fSParameter); return; } }while (num2 < this.fNGraphUpdate); num2 = 0; this.wm8s050QY = this.GetTrainingSetError(); this.V8laR9xb7.Add((double)num3, this.wm8s050QY); if (this.WKl1lduPx != null) { this.MSg9cpEpW = this.GetValidationSetError(); this.XOwvCEen2.Add((double)num3, this.MSg9cpEpW); } ++num3; }while (this.fViewMode != EViewMode.OnLine); goto label_1; }
public void Renormalize() { for (int Col = 0; Col < this.fNInput; ++Col) { double storedMean = this.GetStoredMean(Col); double num1 = Math.Sqrt(this.GetStoredVariance(Col)); for (int Seek = 0; Seek < this.fData.Count; ++Seek) { TNeuralData data = this.GetData(Seek); double num2 = data.Input[Col]; data.Input[Col] = num2 * num1 + storedMean; } } }
public TNeuralData(TNeuralData Data) { this.mqxB9tafd = Data.mqxB9tafd; this.XkLVodNhF = Data.mqxB9tafd; this.dRXrjBaeW = this.mqxB9tafd == 0 ? (double[])null : new double[this.mqxB9tafd]; this.s9P8N17Q3 = this.XkLVodNhF == 0 ? (double[])null : new double[this.XkLVodNhF]; for (int index = 0; index < this.mqxB9tafd; ++index) { this.dRXrjBaeW[index] = Data.dRXrjBaeW[index]; } for (int index = 0; index < this.XkLVodNhF; ++index) { this.s9P8N17Q3[index] = Data.s9P8N17Q3[index]; } }
public void PrintTrainingSetError() { int ndata = this.tD5M1LlFx.GetNData(); double num = 0.0; for (int Seek = 0; Seek < ndata; ++Seek) { TNeuralData data = this.tD5M1LlFx.GetData(Seek); this.fInput = data.Input; this.fTarget = data.Output; this.FeedForward(); this.ComputeError(); num += this.GetError(); this.PrintError(); } }
public double GetTrainingSetError(int Option) { if (Option != 0) { return(this.wm8s050QY); } int ndata = this.tD5M1LlFx.GetNData(); double num = 0.0; for (int Seek = 0; Seek < ndata; ++Seek) { TNeuralData data = this.tD5M1LlFx.GetData(Seek); this.fInput = data.Input; this.fTarget = data.Output; this.FeedForward(); this.ComputeError(); num += this.GetError(); } return(num / (double)ndata); }
public double GetValidationSetError(int Option) { if (Option != 0) { return(this.MSg9cpEpW); } if (this.WKl1lduPx == null) { return(0.0); } int ndata = this.WKl1lduPx.GetNData(); double num = 0.0; for (int Seek = 0; Seek < ndata; ++Seek) { TNeuralData data = this.WKl1lduPx.GetData(Seek); this.fInput = data.Input; this.fTarget = data.Output; this.FeedForward(); this.ComputeError(); num += this.GetError(); } return(num / (double)ndata); }
public void AddData(TNeuralData NeuralData) { this.fData.Add((object) NeuralData); ++this.fNData; }
public void AddData(TNeuralData NeuralData) { this.fData.Add((object)NeuralData); ++this.fNData; }