/// <summary> /// Compute the upper bound on time before two shapes penetrate. Time is represented as /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate, /// non-tunneling collision. If you change the time interval, you should call this function /// again. /// Note: use Distance() to compute the contact point and normal at the time of impact. /// </summary> /// <param name="output">The output.</param> /// <param name="input">The input.</param> public static void CalculateTimeOfImpact(out TOIOutput output, TOIInput input) { ++TOICalls; output = new TOIOutput(); output.State = TOIOutputState.Unknown; output.T = input.TMax; Sweep sweepA = input.SweepA; Sweep sweepB = input.SweepB; // Large rotations can make the root finder fail, so we normalize the // sweep angles. sweepA.Normalize(); sweepB.Normalize(); float tMax = input.TMax; float totalRadius = input.ProxyA.Radius + input.ProxyB.Radius; float target = Math.Max(Settings.LinearSlop, totalRadius - 3.0f * Settings.LinearSlop); const float tolerance = 0.25f * Settings.LinearSlop; Debug.Assert(target > tolerance); float t1 = 0.0f; const int k_maxIterations = 20; int iter = 0; // Prepare input for distance query. SimplexCache cache; _distanceInput.ProxyA = input.ProxyA; _distanceInput.ProxyB = input.ProxyB; _distanceInput.UseRadii = false; // The outer loop progressively attempts to compute new separating axes. // This loop terminates when an axis is repeated (no progress is made). for (; ; ) { Transform xfA, xfB; sweepA.GetTransform(out xfA, t1); sweepB.GetTransform(out xfB, t1); // Get the distance between shapes. We can also use the results // to get a separating axis. _distanceInput.TransformA = xfA; _distanceInput.TransformB = xfB; DistanceOutput distanceOutput; Distance.ComputeDistance(out distanceOutput, out cache, _distanceInput); // If the shapes are overlapped, we give up on continuous collision. if (distanceOutput.Distance <= 0.0f) { // Failure! output.State = TOIOutputState.Overlapped; output.T = 0.0f; break; } if (distanceOutput.Distance < target + tolerance) { // Victory! output.State = TOIOutputState.Touching; output.T = t1; break; } SeparationFunction.Set(ref cache, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, t1); // Compute the TOI on the separating axis. We do this by successively // resolving the deepest point. This loop is bounded by the number of vertices. bool done = false; float t2 = tMax; int pushBackIter = 0; for (; ; ) { // Find the deepest point at t2. Store the witness point indices. int indexA, indexB; float s2 = SeparationFunction.FindMinSeparation(out indexA, out indexB, t2); // Is the final configuration separated? if (s2 > target + tolerance) { // Victory! output.State = TOIOutputState.Seperated; output.T = tMax; done = true; break; } // Has the separation reached tolerance? if (s2 > target - tolerance) { // Advance the sweeps t1 = t2; break; } // Compute the initial separation of the witness points. float s1 = SeparationFunction.Evaluate(indexA, indexB, t1); // Check for initial overlap. This might happen if the root finder // runs out of iterations. if (s1 < target - tolerance) { output.State = TOIOutputState.Failed; output.T = t1; done = true; break; } // Check for touching if (s1 <= target + tolerance) { // Victory! t1 should hold the TOI (could be 0.0). output.State = TOIOutputState.Touching; output.T = t1; done = true; break; } // Compute 1D root of: f(x) - target = 0 int rootIterCount = 0; float a1 = t1, a2 = t2; for (; ; ) { // Use a mix of the secant rule and bisection. float t; if ((rootIterCount & 1) != 0) { // Secant rule to improve convergence. t = a1 + (target - s1) * (a2 - a1) / (s2 - s1); } else { // Bisection to guarantee progress. t = 0.5f * (a1 + a2); } float s = SeparationFunction.Evaluate(indexA, indexB, t); if (Math.Abs(s - target) < tolerance) { // t2 holds a tentative value for t1 t2 = t; break; } // Ensure we continue to bracket the root. if (s > target) { a1 = t; s1 = s; } else { a2 = t; s2 = s; } ++rootIterCount; ++TOIRootIters; if (rootIterCount == 50) { break; } } TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount); ++pushBackIter; if (pushBackIter == Settings.MaxPolygonVertices) { break; } } ++iter; ++TOIIters; if (done) { break; } if (iter == k_maxIterations) { // Root finder got stuck. Semi-victory. output.State = TOIOutputState.Failed; output.T = t1; break; } } TOIMaxIters = Math.Max(TOIMaxIters, iter); }
/// <summary> /// Compute the upper bound on time before two shapes penetrate. Time is represented as /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate, /// non-tunneling collision. If you change the time interval, you should call this function /// again. /// Note: use Distance() to compute the contact point and normal at the time of impact. /// </summary> /// <param name="output">The output.</param> /// <param name="input">The input.</param> public static void CalculateTimeOfImpact(out TOIOutput output, ref TOIInput input) { ++TOICalls; output = new TOIOutput(); output.State = TOIOutputState.Unknown; output.T = input.TMax; Sweep sweepA = input.SweepA; Sweep sweepB = input.SweepB; // Large rotations can make the root finder fail, so we normalize the // sweep angles. sweepA.Normalize(); sweepB.Normalize(); float tMax = input.TMax; float totalRadius = input.ProxyA.Radius + input.ProxyB.Radius; float target = Math.Max(Settings.LinearSlop, totalRadius - 3.0f * Settings.LinearSlop); const float tolerance = 0.25f * Settings.LinearSlop; Debug.Assert(target > tolerance); float t1 = 0.0f; const int k_maxIterations = 20; int iter = 0; // Prepare input for distance query. SimplexCache cache; DistanceInput distanceInput; distanceInput.ProxyA = input.ProxyA; distanceInput.ProxyB = input.ProxyB; distanceInput.UseRadii = false; // The outer loop progressively attempts to compute new separating axes. // This loop terminates when an axis is repeated (no progress is made). for (;;) { Transform xfA, xfB; sweepA.GetTransform(out xfA, t1); sweepB.GetTransform(out xfB, t1); // Get the distance between shapes. We can also use the results // to get a separating axis. distanceInput.TransformA = xfA; distanceInput.TransformB = xfB; DistanceOutput distanceOutput; Distance.ComputeDistance(out distanceOutput, out cache, ref distanceInput); // If the shapes are overlapped, we give up on continuous collision. if (distanceOutput.Distance <= 0.0f) { // Failure! output.State = TOIOutputState.Overlapped; output.T = 0.0f; break; } if (distanceOutput.Distance < target + tolerance) { // Victory! output.State = TOIOutputState.Touching; output.T = t1; break; } SeparationFunction fcn = new SeparationFunction(ref cache, ref input.ProxyA, ref sweepA, ref input.ProxyB, ref sweepB, t1); // Compute the TOI on the separating axis. We do this by successively // resolving the deepest point. This loop is bounded by the number of vertices. bool done = false; float t2 = tMax; int pushBackIter = 0; for (;;) { // Find the deepest point at t2. Store the witness point indices. int indexA, indexB; float s2 = fcn.FindMinSeparation(out indexA, out indexB, t2); // Is the final configuration separated? if (s2 > target + tolerance) { // Victory! output.State = TOIOutputState.Seperated; output.T = tMax; done = true; break; } // Has the separation reached tolerance? if (s2 > target - tolerance) { // Advance the sweeps t1 = t2; break; } // Compute the initial separation of the witness points. float s1 = fcn.Evaluate(indexA, indexB, t1); // Check for initial overlap. This might happen if the root finder // runs out of iterations. if (s1 < target - tolerance) { output.State = TOIOutputState.Failed; output.T = t1; done = true; break; } // Check for touching if (s1 <= target + tolerance) { // Victory! t1 should hold the TOI (could be 0.0). output.State = TOIOutputState.Touching; output.T = t1; done = true; break; } // Compute 1D root of: f(x) - target = 0 int rootIterCount = 0; float a1 = t1, a2 = t2; for (;;) { // Use a mix of the secant rule and bisection. float t; if ((rootIterCount & 1) != 0) { // Secant rule to improve convergence. t = a1 + (target - s1) * (a2 - a1) / (s2 - s1); } else { // Bisection to guarantee progress. t = 0.5f * (a1 + a2); } float s = fcn.Evaluate(indexA, indexB, t); if (Math.Abs(s - target) < tolerance) { // t2 holds a tentative value for t1 t2 = t; break; } // Ensure we continue to bracket the root. if (s > target) { a1 = t; s1 = s; } else { a2 = t; s2 = s; } ++rootIterCount; ++TOIRootIters; if (rootIterCount == 50) { break; } } TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount); ++pushBackIter; if (pushBackIter == Settings.MaxPolygonVertices) { break; } } ++iter; ++TOIIters; if (done) { break; } if (iter == k_maxIterations) { // Root finder got stuck. Semi-victory. output.State = TOIOutputState.Failed; output.T = t1; break; } } TOIMaxIters = Math.Max(TOIMaxIters, iter); }