//--------------------------------------------------------------------------------------- public void FindSolutions_FuzzyAHP() { bool consistency; double[] choices; double[] tempresult; AllAhpCriteria = new Dictionary <Case, double[]>(); AllFAhpCriteria = new Dictionary <Case, double[]>(); AllAhpResults = new Dictionary <Case, double[, ]>(); AllFuzzyAhpResults = new Dictionary <Case, double[, ]>(); List <double[, ]> tempahp; List <double[, ]> tempfahp; List <Case> AhpArrCases; double[,] Ahp_Results; double[,] Fahp_Results; //--------------------------------------------------------------------------------- for (int u = 0; u < exp_random_cases.Count; u++) { Case _problem = exp_random_cases[u]; // Criteria Comparsions------------------------ MyAHPModel model = new MyAHPModel(count_citeria); tempahp = new List <double[, ]>(); tempfahp = new List <double[, ]>(); double[,] cri_arr = model.Create_Criteria_Comparison_Array(count_citeria); //-------Criteria Weights---------------------------------------------------------------- model.AddCriteria(cri_arr); double[] cri_wgh = new double[count_citeria]; bool res = false; while (!res) { if (model.CalculatedCriteria()) { res = true; } } cri_wgh = model.CriteriaWeights; //-------------------------------AHP-------------------------------------------------- AhpArrCases = FindAlternative_WithClustering(_problem); if (AhpArrCases.Count != 0) { // non clustering MyAHPModel model1 = new MyAHPModel(count_citeria, AhpArrCases.Count); model1.AddCriteria(cri_arr); model1.CalculatedCriteria(); AllAhpCriteria.Add(exp_random_cases[u], model1.CriteriaWeights); // Choices Comparsions------------------------ consistency = false; choices = new double[AhpArrCases.Count]; tempresult = new double[AhpArrCases.Count]; for (int uu = 0; uu < count_citeria; uu++) { double[,] comp_choice = model1.CreateOne_CeiteriaChoiceComp(uu, AhpArrCases); while (!consistency) { tempresult = model1.Calculated_One__Choic(out consistency, model1.CriteriaWeights[uu], comp_choice); } consistency = false; for (int h = 0; h < tempresult.GetLength(0); h++) { choices[h] += tempresult[h]; } } int ii = 0; Ahp_Results = new double[AhpArrCases.Count, 2]; foreach (Case cc in AhpArrCases) { Ahp_Results[ii, 0] = Convert.ToDouble(cc.GetFeature("id").GetFeatureValue()); Ahp_Results[ii, 1] = choices[ii] * 100; ii++; } // sort Clustered for (int i = 0; i < Ahp_Results.GetLength(0) - 1; i++) { for (int j = 0; j < Ahp_Results.GetLength(0) - i - 1; j++) { if (Ahp_Results[j, 1] < Ahp_Results[j + 1, 1]) { double temp = Ahp_Results[j, 1]; Ahp_Results[j, 1] = Ahp_Results[j + 1, 1]; Ahp_Results[j + 1, 1] = temp; temp = Ahp_Results[j, 0]; Ahp_Results[j, 0] = Ahp_Results[j + 1, 0]; Ahp_Results[j + 1, 0] = temp; } else if (Ahp_Results[j, 1] == Ahp_Results[j + 1, 1]) { EuclideanSimilarity s = new EuclideanSimilarity(); int num1 = Convert.ToInt32(Ahp_Results[j, 0]); int num2 = Convert.ToInt32(Ahp_Results[j + 1, 0]); double sim1 = s.Similarity(AhpArrCases[num1], _problem); double sim2 = s.Similarity(AhpArrCases[num2], _problem); if (sim2 > sim1) { double temp = Ahp_Results[j, 1]; Ahp_Results[j, 1] = Ahp_Results[j + 1, 1]; Ahp_Results[j + 1, 1] = temp; temp = Ahp_Results[j, 0]; Ahp_Results[j, 0] = Ahp_Results[j + 1, 0]; Ahp_Results[j + 1, 0] = temp; } } } } // Fuzzy MyFuzzyAHP model2 = new MyFuzzyAHP(count_citeria, AhpArrCases.Count); model2.AddCriteria(cri_arr); model2.CalculatedCriteria(); AllFAhpCriteria.Add(exp_random_cases[u], model2.CriteriaWeights); // Choices Comparsions------------------------ consistency = false; choices = new double[AhpArrCases.Count]; tempresult = new double[AhpArrCases.Count]; for (int uu = 0; uu < count_citeria; uu++) { double[,] comp_choice = model2.CreateOne_CeiteriaChoiceComp(uu, AhpArrCases); while (!consistency) { tempresult = model2.Calculated_One__Choice(out consistency, model2.CriteriaWeights[uu], comp_choice); } consistency = false; for (int h = 0; h < tempresult.GetLength(0); h++) { choices[h] += tempresult[h]; } } ii = 0; Fahp_Results = new double[AhpArrCases.Count, 2]; foreach (Case cc in AhpArrCases) { Fahp_Results[ii, 0] = Convert.ToDouble(cc.GetFeature("id").GetFeatureValue()); Fahp_Results[ii, 1] = choices[ii] * 100; ii++; } // sort Clustered for (int i = 0; i < Fahp_Results.GetLength(0) - 1; i++) { for (int j = 0; j < Fahp_Results.GetLength(0) - i - 1; j++) { if (Fahp_Results[j, 1] < Fahp_Results[j + 1, 1]) { double temp = Fahp_Results[j, 1]; Fahp_Results[j, 1] = Fahp_Results[j + 1, 1]; Fahp_Results[j + 1, 1] = temp; temp = Fahp_Results[j, 0]; Fahp_Results[j, 0] = Fahp_Results[j + 1, 0]; Fahp_Results[j + 1, 0] = temp; } } } AllAhpResults.Add(exp_random_cases[u], Ahp_Results); AllFuzzyAhpResults.Add(exp_random_cases[u], Fahp_Results); } } //end if } // end for
private void button21_Click(object sender, EventArgs e) { // display int dG_WithR = 0; dG_With.Columns.Clear(); //dG_Non.Columns.Add("Porblem No ", "Porblem No "); dG_With.Columns.Add("SolNum", "Sol Num "); dG_With.Columns.Add("Weight ", "Weight "); dG_With.Columns.Add("Sim ", "Sim "); List <Case> solutions = statistics.FindAlternative_WithClustering(statistics.exp_random_cases[problem_num]); // call method listBox1.Items.Add("Finding Alternatices by specifying best cluster"); double[] ranks; Dictionary <int, double[, ]> choices; double[,] criteriaarr; MyFuzzyAHP myfahp = new MyFuzzyAHP(statistics.count_citeria, solutions.Count); criteriaarr = GenerateComparison.CriteriaComparisonMatrix; myfahp.AddCriteria(criteriaarr); myfahp.CalculatedCriteria(); choices = GenerateComparison.Create_All_Criteria_Choice_Comparison_Array(solutions); myfahp.AddCriterionRatedChoices(choices); ranks = myfahp.CalculatedChoices(); for (int i = 0; i < ranks.Length; i++) { dG_With.Rows.Add(); dG_With.Rows[dG_WithR].Cells[0].Value = solutions[i].GetFeature("id").GetFeatureValue().ToString(); dG_With.Rows[dG_WithR].Cells[1].Value = Math.Round(ranks[i] * 100, 2); EuclideanSimilarity s = new EuclideanSimilarity(); dG_With.Rows[dG_WithR].Cells[2].Value = Math.Round(s.Similarity(solutions[i], statistics.exp_random_cases[problem_num]) * 100, 2); dG_WithR++; } dG_With.Sort(dG_With.Columns[1], ListSortDirection.Descending); if (dG_Prob.Columns.Count == 0) { dG_Prob.Columns.Add("Criteria", " Criteria "); dG_Prob.Columns.Add("AHP", "AHP"); dG_Prob.Columns.Add("FuzzyAHP", "Fuzzy AHP"); for (int i = 1; i < solutions[0].GetFeatures().Count - 1; i++) { dG_Prob.Rows.Add(); Feature f = (Feature)solutions[0].GetFeatures()[i]; dG_Prob.Rows[i - 1].Cells[0].Value = f.GetFeatureName().ToString(); dG_Prob.Rows[i - 1].Cells[2].Value = Math.Round(myfahp.CriteriaWeights[i - 1] * 100, 2); } } else { for (int i = 1; i < solutions[0].GetFeatures().Count - 1; i++) { Feature f = (Feature)solutions[0].GetFeatures()[i]; dG_Prob.Rows[i - 1].Cells[2].Value = Math.Round(myfahp.CriteriaWeights[i - 1] * 100, 2); } } dG_Prob.AutoResizeColumns(); dG_Prob.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.AllCells; dG_With.AutoResizeColumns(); dG_With.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.AllCells; // display }