コード例 #1
0
        /// <summary>Gets a copy of this instance.</summary>
        /// <returns></returns>
        public Similars Copy()
        {
            Similars copySmls = new Similars(Count);

            Array.Copy(_numbers, copySmls._numbers, Count);
            return(copySmls);
        }
コード例 #2
0
        /// <summary>Gets inizializeted similar words for given seed word.</summary>
        /// <param name="seedNumber">Serial number of seed word.</param>
        /// <returns>The total nubmer of filled similars.</returns>
        /// <remarks>In Turbo mode getting Similars are saved and returned from memory by requery.</remarks>
        public static Similars GetSimilars(int seedNumber)
        {
            if (_MismatchCount == 0)
            {
                return(null);
            }
            _Word = Words.GetWord(seedNumber);
            int sum = 0;

            if (_IsTurbo)
            {
                Similars smls = _ArrSimilars[seedNumber];
                if (smls == null)
                {
                    // create and fill Similars
                    _ArrSimilars[seedNumber] = smls = new Similars(_Capacity);
                    Fill_recurs(0, _MismatchCount, seedNumber, smls._numbers, ref sum, true);
                }
                return(smls);
            }
            else
            {
                Fill_recurs(0, _MismatchCount, seedNumber, _Similars._numbers, ref sum, true);
                return(_Similars);
            }
        }
コード例 #3
0
        /// <summary>Initializes static members.</summary>
        /// <param name="mismatchCount">The number of acceptable mismatches</param>
        /// <param name="isTurbo">True if Turbo mode is defined.</param>
        /// <param name="isDifferentWordLength">True if word's length is differ with previous session.</param>
        public static void Init(byte mismatchCount, bool isTurbo, bool isDifferentWordLength)
        {
            _Capacity = GetCapacity(Words.WordLength, mismatchCount);
            bool isDiffer = mismatchCount != _MismatchCount || isDifferentWordLength;

            if (_IsTurbo = isTurbo)
            {
                // save filling Similars in case of the same MismatchCount & WordLength
                _Similars = null;
                if (isDiffer || _ArrSimilars == null)
                {
                    _ArrSimilars = new Similars[Words.Count];
                }
            }
            else
            {
                _ArrSimilars = null;
                if (isDiffer || _Similars == null)
                {
                    _Similars = new Similars(_Capacity);
                }
            }
            _MismatchCount     = mismatchCount;
            _DepthOfClastering = DoC_FACTOR * Words.WordLength;
        }
コード例 #4
0
        /// <summary>Reports the shrinked (without zero Frequency) Similars of the specified pattern.</summary>
        /// <param name="seedNumber">The number of the seed-word.</param>
        /// <returns>If Similars have zero-frequency items, the shrinked (without zero Frequency) Similars; otherwise initial Similars.</returns>
        public Similars GetSimilars(int seedNumber)
        {
            Similars smls        = Similars.GetSimilars(seedNumber);
            bool     isNotCopied = true;

            // We have to remove from the total Similars all the numbers with zero Frequency
            int  j;
            bool isFound = true;

            for (int i = 0; i < smls.Count; i++)
            {
                // scan throw the whole collection to check for real existing similars
                for (j = 0; j < Count; j++)
                {
                    if (isFound = this[j].SeedNumber == smls[i])
                    {
                        break;
                    }
                }
                if (!isFound)
                {
                    // if zero-frequence element is finded, Similars should be copied
                    // because it change its Count by shrinking
                    if (isNotCopied)
                    {
                        smls        = smls.Copy();
                        isNotCopied = false;
                    }
                    smls[i] = Similars.UndefNumber;
                }
            }
            return(isNotCopied ? smls : smls.Shrink());
        }
コード例 #5
0
 /// <summary>Initialezas static member.</summary>
 /// <param name="wordLength">The length of word.</param>
 /// <param name="mismatchCount">The number of acceptable mismatches</param>
 public static void Init(byte wordLength, byte mismatchCount)
 {
     _wordLength    = wordLength;
     _wordLastIndex = (byte)(wordLength - 1);
     _count         = (int)Math.Pow(Chars.Count, wordLength);
     Similars.Init(mismatchCount);
     // inizialise words
     _wordsTrain = new byte[_count * wordLength];
     SetRank_recurs(0, 1);
 }
コード例 #6
0
        /// <summary>Initialezas static member.</summary>
        /// <param name="wordLength">The length of word.</param>
        /// <param name="mismatchCount">The number of acceptable mismatches</param>
        /// <param name="isTurbo">True if Turbo mode is defined.</param>
        public static void Init(byte wordLength, byte mismatchCount, bool isTurbo)
        {
            bool isDifferentLength = _wordLength != wordLength;

            if (isDifferentLength)
            {
                _wordLength    = wordLength;
                _wordLastIndex = (byte)(wordLength - 1);
                _count         = GetCount(wordLength);
            }
            Similars.Init(mismatchCount, isTurbo, isDifferentLength);   // _wordLength & _count are used in that method, so it could be the last
        }
コード例 #7
0
        /// <summary>
        /// Fills referenced array by the indexes of similar words of given seed word an returns number of indexes.
        /// </summary>
        /// <param name="words">Words sequence.</param>
        /// <param name="wrdIndex">The index of the seed word in the words sequence.</param>
        /// <param name="smlIndexes">Array of indexes of similar words.</param>
        /// <returns></returns>
        public static int Fill(byte[] words, int wrdIndex, ref Similars smlIndexes)
        {
            bool[] lockedLetters = new bool[Words.WordLength];    // array of signs indicated wich letter's position is locked
            int    currSmlIndex  = 0;

            if (_MismatchCount > 0)
            {
                FillUnder(ref words, wrdIndex, ref lockedLetters, 0, _MismatchCount, ref smlIndexes, ref currSmlIndex);
            }

            return(smlIndexes._count = currSmlIndex);
        }
コード例 #8
0
        /// <summary>
        /// Fills referenced array by the numbers of similar words for given seed word and returns number of similars.
        /// </summary>
        /// <param name="word">Seed word.</param>
        /// <param name="smlIndexes">External uninitialised array of numbers of similar words.</param>
        /// <returns>The total nubmer of filled similars.</returns>
        public static int Fill(byte[] word, ref Similars smlIndexes)
        {
            _word         = word;
            _smlNumbers   = smlIndexes;
            _currSmlIndex = 0;

            if (_MismatchCount > 0)
            {
                FillUnder_recurs(0, _MismatchCount);
            }

            return(smlIndexes._count = _currSmlIndex);
        }
コード例 #9
0
        ///// <summary>Removes all the elements with the zero Frequency from the instance.</summary>
        ///// <remarks>Sorts the collection by Frequency.</remarks>
        //void Shrink ()
        //{
        //    if (_isShrinked == true)
        //        return;
        //    Sort();
        //    //System.Console.Beep(400, 100);
        //    // start from the end because zero Frequencies are much more less then unzero
        //    for (int i = Count-1; i >= 0; i--)
        //        //if (this[i].Freq > 0)
        //        if (this[i] > 0)
        //        {
        //            Array.Resize(ref _coll, _insCount = i+1);
        //            break;
        //        }
        //    _isShrinked = true;
        //}

        #endregion
        #region Statistic methods

        /// <summary>Reports the shrinked (without zero Frequency) Similars of the specified unsorted pattern.</summary>
        /// <param name="seedNumber">The number of the seed-word in the collection.</param>
        /// <returns>If Similars have zero-frequency items, the shrinked (without zero Frequency) Similars; otherwise initial Similars.</returns>
        public Similars GetSimilars(int seedNumber)
        {
            Similars smls        = Similars.GetSimilars(seedNumber);
            bool     isNotCopied = true;

            // We have to remove from the total Similars all the numbers with zero Frequency
            // this is a variant used in ScanWindows
            // we may use direct indexing to check zero-frequency seeds
            for (int i = 0; i < smls.Count; i++)
            {
                if (this[smls[i]] == 0)
                {
                    // if zero-frequence element is finded, Similars should be copied
                    // because it change its Count by shrinking
                    if (isNotCopied)
                    {
                        smls        = smls.Copy();
                        isNotCopied = false;
                    }
                    smls[i] = Similars.UndefNumber;
                }
            }
            return(isNotCopied ? smls : smls.Shrink());
        }
コード例 #10
0
        /// <summary>Adds to referenced array the indexes of similar words of given seed word.</summary>
        /// <param name="words">Words sequence.</param>
        /// <param name="wrdIndex">The index of the seed word in the word's sequence.</param>
        /// <param name="lockedLetters">Array of signs indicated wich letter's position is locked on this step.</param>
        /// <param name="startPos">Started letter's position in seed word at wich search begins</param>
        /// <param name="mismatchCnt">Number of mismathes.</param>
        /// <param name="smlIndexes">Array of indexes of similar words.</param>
        /// <param name="currSmlIndex">Current writing position in array of indexes of similar words.</param>
        static void FillUnder(ref byte[] words, int wrdIndex, ref bool[] lockedLetters, int startPos, int mismatchCnt, ref Similars smlIndexes, ref int currSmlIndex)
        {
            byte j, originLetter, currLetter;
            int  ind, i;

            mismatchCnt--;      // reduce count of mismatches because of processing current mismatch's level
            for (i = startPos; i < Words.WordLength; i++)
            {
                if (!lockedLetters[i])   // pass locked letter
                {
                    ind          = i + wrdIndex;
                    originLetter = words[ind];     // save original letter wich would be changed
                    // substitute other letters
                    for (j = 0; j < Chars.Count; j++)
                    {
                        //currLetter = Chars.GetCodeByIndex(j);
                        currLetter = j;
                        if (currLetter != originLetter)
                        {
                            words[ind] = currLetter;                                       // substitute other letter
                            smlIndexes[currSmlIndex++] = Words.GetNumber(words, wrdIndex); // save words index
                            if (mismatchCnt > 0)                                           // lock letter and pass down
                            {
                                lockedLetters[i] = true;                                   // lock letter
                                FillUnder(ref words, wrdIndex, ref lockedLetters, i + 1, mismatchCnt, ref smlIndexes, ref currSmlIndex);
                                lockedLetters[i] = false;                                  // unlock letter
                            }
                        }
                    }
                    words[ind] = originLetter;     // restore original letter
                }
            }
            mismatchCnt++;      // restore count of mismatches
        }
コード例 #11
0
        /// <summary>Initializes an instance of the Patterns.</summary>
        /// <param name="worker">The BackgroundWorker in wich Processing is run.</param>
        /// <param name="sequence">The 'names' sequence.</param>
        /// <param name="startIndex">The index in the inputArray at which scanning begins.</param>
        /// <param name="strictLength">The precise length of range of inputArray for scanning.</param>
        /// <param name="strictFreqs">The external array of strict frequencies; needed to avoid memory overallotment.</param>
        /// <param name="loopsPerStep">The amount of loops per one progress bar step; -1 if without progress bar steps.</param>
        /// <param name="maxFreqNumber">Return number of Pattern with max Frequence: if init value = -1, then no return.</param>
        /// <param name="isFirstCall">True if method is called first time in cycle; otherwise, false.</param>
        /// <param name="isDrawPlot">True if plot is drawing; otherwise, false.</param>
        /// <returns>Maximum frequency value in the instance; if init maxFreqNumber param = -1, then 0.</returns>
        int Init(
            BackgroundWorker worker, byte[] sequence,
            int startIndex, int strictLength, int[] strictFreqs, int loopsPerStep, ref int maxFreqNumber,
            bool isFirstCall, bool isDrawPlot)
        {
            #region Comments

            /*
             * Patterns are generated from inputArray sequence on 2 steps.
             *
             * Step 1: Initialization strict frequency
             * We create a new collection with the maximum possible length and an temporary array of strict frequencies.
             * Index of each element for both collections is equal to absolute word number,
             * so we scan through the input sequence and increase strict frequency in array directly by indexing.
             *
             * Step 2: Initialization Frequency
             * From each pattern in collection we added the Frequency of all his Similars.
             * In ALL POSSIBLE mode we search all the patterns, because their Similars may have Frequency > 0;
             * in FROM INPUT mode we skip zero-frequency patterns.
             *
             * In TURBO mode all the Similars are keeping in memory after first generation,
             * so we should go through the given Similars collection and adding thier Frequency directly by word number, equls to index in this instance.
             * In ORDINARY mode we receive the sum of Frequencies of all Similars through single call of Similars.SumUp().
             *
             * So we receive the frequencies with mismatches for all the Patterns in this instance.
             *
             * This is the maximum fastest method because of using only direct indexing.
             * We scan input sequence just once? and no searches through collection are required.
             */
            #endregion

            //System.Windows.Forms.MessageBox.Show(loopsPerStep.ToString());

            int i, maxFreq = 0;

            worker.ReportProgress(TreatSCANNING);
            OnPrgBarReseat();

            this.Clear();
            Array.Clear(strictFreqs, 0, strictFreqs.Length);

            //System.Windows.Forms.MessageBox.Show(startIndex.ToString("startIndex= 0  ") + strictLength.ToString("strictLength= 0  "));
            //*** Step_1: Look over all the patterns in a range of sequence
            for (i = 0; i <= strictLength; i++)
            {
                strictFreqs[Words.GetNumber(sequence, startIndex + i)]++;
            }

            //*** Step_2: expanding to mismatches
            int      k;
            Similars smls;
            //Pattern ptn;
            // compare each Pattern to all the Pattern's in the same collection with a glance of mismathes;
            // collection is still unsorted
            for (i = 0; i < Count; i++)
            {
                if (worker.CancellationPending)     // Canceled by user.
                {
                    throw new ApplicationException(string.Empty);
                }

                if (IsAllPossible || (strictFreqs[i] > 0))
                {
                    //ptn = this[i];
                    if (Similars.IsTurbo)
                    {
                        smls = Similars.GetSimilars(i);
                        for (k = 0; k < smls.Count; k++)
                        {
                            //ptn.Freq += strictFreqs[smls[k]];
                            this[i] += strictFreqs[smls[k]];
                        }
                    }
                    else
                    {
                        //ptn.Freq += Similars.SumUp(i, strictFreqs);
                        this[i] += Similars.SumUp(i, strictFreqs);
                    }

                    //ptn.WordNumber = i;             // initialize number
                    //ptn.Freq += strictFreqs[i];     // frequency itself
                    this[i] += strictFreqs[i];     // frequency itself
                    //this[i] = ptn;
                    // keep index of maximum Freq without sorting: needs only in case of Max Average Choice or Global task.
                    //if (maxFreqNumber >= 0 && ptn.Freq > maxFreq)
                    if (maxFreqNumber >= 0 && this[i] > maxFreq)
                    {
                        //maxFreq = ptn.Freq;
                        maxFreq       = this[i];
                        maxFreqNumber = i;
                    }
                }
                OnPrgBarIncreased(worker, loopsPerStep);
            }
            if (isDrawPlot)
            {
                // if it needs to keep sorting by name, we should clone collection for drawing,
                // because it will be sorted by Freq during drawing
                worker.ReportProgress(TreatSORTING);
                worker.ReportProgress(Convert.ToInt32(isFirstCall), Clone());
            }
            return(maxFreq);
        }