public void TestIntegerBalance() { DataNormalization norm = CreateIntegerBalance(); norm.Process(); Check(norm, 3); }
public void TestRangeSegregate() { DataNormalization norm = CreateRangeSegregate(); norm.Process(); Check(norm, 1); }
public void TestIndexSegregate() { DataNormalization norm = CreateIndexSegregate(); norm.Process(); Check(norm, 6); }
private void Check(DataNormalization norm, int req) { ISegregator s = norm.Segregators[0]; double[][] arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); Assert.AreEqual(req, arrayOutput.Length); }
private void Generate() { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddInputField(c = new InputFieldArray2D(false, ARRAY_2D, 2)); norm.AddInputField(d = new InputFieldArray2D(false, ARRAY_2D, 3)); norm.AddInputField(e = new InputFieldArray2D(false, ARRAY_2D, 4)); norm.AddOutputField(new OutputFieldDirect(a)); norm.AddOutputField(new OutputFieldDirect(b)); norm.AddOutputField(new OutputFieldDirect(c)); norm.AddOutputField(new OutputFieldDirect(d)); norm.AddOutputField(new OutputFieldDirect(e)); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.Process(); }
public void TestSampleSegregate() { DataNormalization norm = CreateSampleSegregate(); norm.Process(); Check(norm, 6); }
public DataNormalization Create(double[][] outputArray) { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(FILENAME.ToString()); norm.AddInputField(a = new InputFieldCSV(false, FILENAME.ToString(), 0)); norm.AddInputField(b = new InputFieldCSV(false, FILENAME.ToString(), 1)); norm.AddInputField(c = new InputFieldCSV(false, FILENAME.ToString(), 2)); norm.AddInputField(d = new InputFieldCSV(false, FILENAME.ToString(), 3)); norm.AddInputField(e = new InputFieldCSV(false, FILENAME.ToString(), 4)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(c, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(d, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(e, 0.1, 0.9)); norm.Storage = new NormalizationStorageArray2D(outputArray); return(norm); }
public void TestAbsolute() { DataNormalization norm = Create(); norm.Process(); Check(norm); }
private void Check(DataNormalization norm) { double[][] arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); Assert.AreEqual(arrayOutput[0][0], 0.1, 0.1); Assert.AreEqual(arrayOutput[1][0], 0.9, 0.1); Assert.AreEqual(arrayOutput[0][1], 0.1, 0.1); Assert.AreEqual(arrayOutput[1][1], 0.9, 0.1); }
private void Check(DataNormalization norm) { double[][] arrayOutput = ((NormalizationStorageArray2D) norm.Storage).GetArray(); Assert.AreEqual(arrayOutput[0][0], 0.1, 0.1); Assert.AreEqual(arrayOutput[1][0], 0.9, 0.1); Assert.AreEqual(arrayOutput[0][1], 0.1, 0.1); Assert.AreEqual(arrayOutput[1][1], 0.9, 0.1); }
public void TestOutputFieldEncode() { double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); DataNormalization norm = Create(arrayOutput); norm.Process(); Check(arrayOutput); }
public void TestAbsoluteSerial() { DataNormalization norm = Create(); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); norm.Process(); Check(norm); }
public void TestArray2D() { double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); DataNormalization norm = Create2D(arrayOutput); norm.Process(); Check2D(arrayOutput); }
public void TestArray1D() { var arrayOutput = new double[5]; DataNormalization norm = Create1D(arrayOutput); norm.Process(); Check1D(arrayOutput); }
public void TestGenerateAndLoad() { double[][] outputArray = EngineArray.AllocateDouble2D(2, 5); Generate(); DataNormalization norm = Create(outputArray); norm.Process(); Check(norm); }
public void TestArray2DSerial() { var arrayOutput = EngineArray.AllocateDouble2D(2, 2); DataNormalization norm = Create2D(arrayOutput); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); norm.Process(); Check2D(arrayOutput); }
public void TestGenerateAndLoadSerial() { double[][] outputArray = EngineArray.AllocateDouble2D(2, 5); Generate(FILENAME2.ToString()); DataNormalization norm = Create(FILENAME2.ToString(), outputArray); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); norm.Process(); Check(norm); }
public void TestGenerateAndLoad() { var outputArray = EngineArray.AllocateDouble2D(2, 5); Generate(FILENAME1.ToString()); DataNormalization norm = Create(FILENAME1.ToString(), outputArray); norm.Process(); Check(norm); }
public void TestOutputFieldEncodeSerialize() { double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); DataNormalization norm = Create(arrayOutput); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); norm.Process(); Check(arrayOutput); }
public void TestArray1DSerial() { var arrayOutput = new double[5]; DataNormalization norm = Create1D(arrayOutput); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); arrayOutput = ((NormalizationStorageArray1D)norm.Storage).GetArray(); norm.Process(); Check1D(arrayOutput); }
public void TestAbsolute() { double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 3); DataNormalization norm = Create(arrayOutput); norm.Process(); for (int i = 0; i < arrayOutput[0].Length; i++) { Assert.AreEqual(arrayOutput[0][i], arrayOutput[1][i], 0.01); } }
public void BuildOutputOneOf(DataNormalization norm, IInputField coverType) { var outType = new OutputOneOf(); outType.AddItem(coverType, 1); outType.AddItem(coverType, 2); outType.AddItem(coverType, 3); outType.AddItem(coverType, 4); outType.AddItem(coverType, 5); outType.AddItem(coverType, 6); outType.AddItem(coverType, 7); norm.AddOutputField(outType, true); }
public void TestAbsoluteSerial() { double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 3); DataNormalization norm = Create(arrayOutput); norm = (DataNormalization)SerializeRoundTrip.RoundTrip(norm); arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); norm.Process(); for (int i = 0; i < arrayOutput[0].Length; i++) { Assert.AreEqual(arrayOutput[0][i], arrayOutput[1][i], 0.01); } }
private void Check(DataNormalization norm) { double[][] arrayOutput = ((NormalizationStorageArray2D)norm.Storage).GetArray(); Assert.AreEqual(-5.0, arrayOutput[0][0]); Assert.AreEqual(2.5, arrayOutput[0][1]); Assert.AreEqual(7.5, arrayOutput[0][2]); Assert.AreEqual(0.0, arrayOutput[0][3]); Assert.AreEqual(-1.0, arrayOutput[1][0]); Assert.AreEqual(0.5, arrayOutput[1][1]); Assert.AreEqual(1.5, arrayOutput[1][2]); Assert.AreEqual(0.0, arrayOutput[1][3]); }
private void Check(DataNormalization norm) { double[][] arrayOutput = ((NormalizationStorageArray2D) norm.Storage).GetArray(); Assert.AreEqual(-5.0, arrayOutput[0][0]); Assert.AreEqual(2.5, arrayOutput[0][1]); Assert.AreEqual(7.5, arrayOutput[0][2]); Assert.AreEqual(0.0, arrayOutput[0][3]); Assert.AreEqual(-1.0, arrayOutput[1][0]); Assert.AreEqual(0.5, arrayOutput[1][1]); Assert.AreEqual(1.5, arrayOutput[1][2]); Assert.AreEqual(0.0, arrayOutput[1][3]); }
private DataNormalization Create1D(double[] arrayOutput) { IInputField a; var target = new NormalizationStorageArray1D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray1D(false, ARRAY_1D)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); return norm; }
private DataNormalization Create1D(double[] arrayOutput) { IInputField a; var target = new NormalizationStorageArray1D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray1D(false, ARRAY_1D)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); return(norm); }
private void Check(DataNormalization norm) { IInputField a = norm.InputFields[0]; IInputField b = norm.InputFields[1]; Assert.AreEqual(1.0, a.Min, 0.1); Assert.AreEqual(6.0, a.Max, 0.1); Assert.AreEqual(2.0, b.Min, 0.1); Assert.AreEqual(7.0, b.Max, 0.1); double[][] outputArray = ((NormalizationStorageArray2D)norm.Storage).GetArray(); for (int i = 0; i < 5; i++) { Assert.AreEqual(0.1, outputArray[0][i], 0.1); Assert.AreEqual(0.9, outputArray[1][i], 0.1); } }
public DataNormalization CreateIndexSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(6, 2); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(new IndexRangeSegregator(0, 3)); return norm; }
private DataNormalization Create() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); var dataset = new BasicMLDataSet(ARRAY_2D, null); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldMLDataSet(false, dataset, 0)); norm.AddInputField(b = new InputFieldMLDataSet(false, dataset, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return norm; }
private DataNormalization CreateSampleSegregate() { IInputField a, b; var arrayOutput = EngineArray.AllocateDouble2D(6, 2); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(new IndexSampleSegregator(0, 3, 2)); return(norm); }
public DataNormalization Create(double[][] arrayOutput) { IInputField a; IInputField b; IInputField c; var target = new NormalizationStorageArray2D(arrayOutput); var group = new MultiplicativeGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldMultiplicative(group, a)); norm.AddOutputField(new OutputFieldMultiplicative(group, b)); norm.AddOutputField(new OutputFieldMultiplicative(group, c)); return norm; }
public void Copy(FileInfo source, FileInfo target, int start, int stop, int size) { var inputField = new IInputField[55]; var norm = new DataNormalization {Report = this, Storage = new NormalizationStorageCSV(target.ToString())}; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } // load only the part we actually want, i.e. training or eval var segregator2 = new IndexSampleSegregator(start, stop, size); norm.AddSegregator(segregator2); norm.Process(); }
public void Narrow(FileInfo source, FileInfo target, int field, int count) { var inputField = new IInputField[55]; var norm = new DataNormalization {Report = this, Storage = new NormalizationStorageCSV(target.ToString())}; for (int i = 0; i < 55; i++) { inputField[i] = new InputFieldCSV(true, source.ToString(), i); norm.AddInputField(inputField[i]); IOutputField outputField = new OutputFieldDirect(inputField[i]); norm.AddOutputField(outputField); } var segregator = new IntegerBalanceSegregator(inputField[field], count); norm.AddSegregator(segregator); norm.Process(); Console.WriteLine(@"Samples per tree type:"); Console.WriteLine(segregator.DumpCounts()); }
private DataNormalization Create(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); OutputFieldEncode a1; OutputFieldEncode b1; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(a1 = new OutputFieldEncode(a)); norm.AddOutputField(b1 = new OutputFieldEncode(b)); a1.AddRange(1.0, 2.0, 0.1); b1.AddRange(0, 100, 0.2); return norm; }
public DataNormalization Create(double[][] arrayOutput) { IInputField a; IInputField b; IInputField c; var target = new NormalizationStorageArray2D(arrayOutput); var group = new MultiplicativeGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldMultiplicative(group, a)); norm.AddOutputField(new OutputFieldMultiplicative(group, b)); norm.AddOutputField(new OutputFieldMultiplicative(group, c)); return(norm); }
private DataNormalization Create() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 2); var dataset = new BasicMLDataSet(ARRAY_2D, null); var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldMLDataSet(false, dataset, 0)); norm.AddInputField(b = new InputFieldMLDataSet(false, dataset, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); return(norm); }
public DataNormalization Create() { IInputField a; IInputField b; IInputField c; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 4); var target = new NormalizationStorageArray2D(arrayOutput); var group = new ZAxisGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldZAxis(group, a)); norm.AddOutputField(new OutputFieldZAxis(group, b)); norm.AddOutputField(new OutputFieldZAxis(group, c)); norm.AddOutputField(new OutputFieldZAxisSynthetic(group)); return norm; }
private DataNormalization Create(double[][] arrayOutput) { IInputField a, b; var target = new NormalizationStorageArray2D(arrayOutput); OutputFieldEncode a1; OutputFieldEncode b1; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(a1 = new OutputFieldEncode(a)); norm.AddOutputField(b1 = new OutputFieldEncode(b)); a1.AddRange(1.0, 2.0, 0.1); b1.AddRange(0, 100, 0.2); return(norm); }
private DataNormalization CreateRangeSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(1, 2); RangeSegregator s; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(s = new RangeSegregator(a, false)); s.AddRange(2, 2, true); return(norm); }
public DataNormalization Create() { IInputField a; IInputField b; IInputField c; double[][] arrayOutput = EngineArray.AllocateDouble2D(2, 4); var target = new NormalizationStorageArray2D(arrayOutput); var group = new ZAxisGroup(); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, SAMPLE1, 0)); norm.AddInputField(b = new InputFieldArray2D(false, SAMPLE1, 1)); norm.AddInputField(c = new InputFieldArray2D(false, SAMPLE1, 2)); norm.AddOutputField(new OutputFieldZAxis(group, a)); norm.AddOutputField(new OutputFieldZAxis(group, b)); norm.AddOutputField(new OutputFieldZAxis(group, c)); norm.AddOutputField(new OutputFieldZAxisSynthetic(group)); return(norm); }
public DataNormalization Create(string filename, double[][] outputArray) { IInputField a; IInputField b; IInputField c; IInputField d; IInputField e; var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = new NormalizationStorageCSV(filename.ToString()); norm.AddInputField(a = new InputFieldCSV(false, filename.ToString(), 0)); norm.AddInputField(b = new InputFieldCSV(false, filename.ToString(), 1)); norm.AddInputField(c = new InputFieldCSV(false, filename.ToString(), 2)); norm.AddInputField(d = new InputFieldCSV(false, filename.ToString(), 3)); norm.AddInputField(e = new InputFieldCSV(false, filename.ToString(), 4)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(c, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(d, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(e, 0.1, 0.9)); norm.Storage = new NormalizationStorageArray2D(outputArray); return norm; }
private void Check(DataNormalization norm, int req) { ISegregator s = norm.Segregators[0]; double[][] arrayOutput = ((NormalizationStorageArray2D) norm.Storage).GetArray(); Assert.AreEqual(req, arrayOutput.Length); }
public void Init(DataNormalization normalization) { this._normalization = normalization; }
private void Check(DataNormalization norm) { IInputField a = norm.InputFields[0]; IInputField b = norm.InputFields[1]; Assert.AreEqual(1.0, a.Min, 0.1); Assert.AreEqual(6.0, a.Max, 0.1); Assert.AreEqual(2.0, b.Min, 0.1); Assert.AreEqual(7.0, b.Max, 0.1); double[][] outputArray = ((NormalizationStorageArray2D) norm.Storage).GetArray(); for (int i = 0; i < 5; i++) { Assert.AreEqual(0.1, outputArray[0][i], 0.1); Assert.AreEqual(0.9, outputArray[1][i], 0.1); } }
/// <summary> /// Saves a normalization to the specified folder with the specified name. /// </summary> /// <param name="directory">The directory.</param> /// <param name="file">The file.</param> /// <param name="normTosave">The norm tosave.</param> public static void SaveNormalization(string directory, string file, DataNormalization normTosave) { SerializeObject.Save(directory + file, normTosave); }
private DataNormalization CreateRangeSegregate() { IInputField a, b; double[][] arrayOutput = EngineArray.AllocateDouble2D(1, 2); RangeSegregator s; var target = new NormalizationStorageArray2D(arrayOutput); var norm = new DataNormalization(); norm.Report = new NullStatusReportable(); norm.Storage = target; norm.AddInputField(a = new InputFieldArray2D(false, ARRAY_2D, 0)); norm.AddInputField(b = new InputFieldArray2D(false, ARRAY_2D, 1)); norm.AddOutputField(new OutputFieldRangeMapped(a, 0.1, 0.9)); norm.AddOutputField(new OutputFieldRangeMapped(b, 0.1, 0.9)); norm.AddSegregator(s = new RangeSegregator(a, false)); s.AddRange(2, 2, true); return norm; }
public DataNormalization Step3(bool useOneOf) { Console.WriteLine(@"Step 3: Normalize training data"); IInputField inputElevation; IInputField inputAspect; IInputField inputSlope; IInputField hWater; IInputField vWater; IInputField roadway; IInputField shade9; IInputField shade12; IInputField shade3; IInputField firepoint; var wilderness = new IInputField[4]; var soilType = new IInputField[40]; IInputField coverType; var norm = new DataNormalization { Report = this, Storage = new NormalizationStorageCSV(_config.NormalizedDataFile.ToString()) }; norm.AddInputField(inputElevation = new InputFieldCSV(true, _config.BalanceFile.ToString(), 0)); norm.AddInputField(inputAspect = new InputFieldCSV(true, _config.BalanceFile.ToString(), 1)); norm.AddInputField(inputSlope = new InputFieldCSV(true, _config.BalanceFile.ToString(), 2)); norm.AddInputField(hWater = new InputFieldCSV(true, _config.BalanceFile.ToString(), 3)); norm.AddInputField(vWater = new InputFieldCSV(true, _config.BalanceFile.ToString(), 4)); norm.AddInputField(roadway = new InputFieldCSV(true, _config.BalanceFile.ToString(), 5)); norm.AddInputField(shade9 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 6)); norm.AddInputField(shade12 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 7)); norm.AddInputField(shade3 = new InputFieldCSV(true, _config.BalanceFile.ToString(), 8)); norm.AddInputField(firepoint = new InputFieldCSV(true, _config.BalanceFile.ToString(), 9)); for (int i = 0; i < 4; i++) { norm.AddInputField(wilderness[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 10 + i)); } for (int i = 0; i < 40; i++) { norm.AddInputField(soilType[i] = new InputFieldCSV(true, _config.BalanceFile.ToString(), 14 + i)); } norm.AddInputField(coverType = new InputFieldCSV(false, _config.BalanceFile.ToString(), 54)); norm.AddOutputField(new OutputFieldRangeMapped(inputElevation)); norm.AddOutputField(new OutputFieldRangeMapped(inputAspect)); norm.AddOutputField(new OutputFieldRangeMapped(inputSlope)); norm.AddOutputField(new OutputFieldRangeMapped(hWater)); norm.AddOutputField(new OutputFieldRangeMapped(vWater)); norm.AddOutputField(new OutputFieldRangeMapped(roadway)); norm.AddOutputField(new OutputFieldRangeMapped(shade9)); norm.AddOutputField(new OutputFieldRangeMapped(shade12)); norm.AddOutputField(new OutputFieldRangeMapped(shade3)); norm.AddOutputField(new OutputFieldRangeMapped(firepoint)); for (int i = 0; i < 40; i++) { norm.AddOutputField(new OutputFieldDirect(soilType[i])); } if (useOneOf) BuildOutputOneOf(norm, coverType); else BuildOutputEquilateral(norm, coverType); norm.Process(); return norm; }