This class implements a simulated annealing training algorithm for neural networks. It is based on the generic SimulatedAnnealing class. It is used in the same manner as any other training class that implements the Train interface. There are essentially two ways you can make use of this class. Either way, you will need a score object. The score object tells the simulated annealing algorithm how well suited a neural network is. If you would like to use simulated annealing with a training set you should make use TrainingSetScore class. This score object uses a training set to score your neural network. If you would like to be more abstract, and not use a training set, you can create your own implementation of the CalculateScore method. This class can then score the networks any way that you like.
Inheritance: Encog.ML.Train.BasicTraining
コード例 #1
0
        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                    "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);
            double startTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStart, false, 10);
            double stopTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStop, false, 2);

            int cycles = holder.GetInt(MLTrainFactory.Cycles, false, 100);

            IMLTrain train = new NeuralSimulatedAnnealing(
                (BasicNetwork) method, score, startTemp, stopTemp, cycles);

            return train;
        }
コード例 #2
0
        /// <summary>
        /// Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            BasicNetwork network = CreateNetwork();

            IMLTrain train;

            if (app.Args.Length > 0 && String.Compare(app.Args[0], "anneal", true) == 0)
            {
                train = new NeuralSimulatedAnnealing(
                    network, new PilotScore(), 10, 2, 100);
            }
            else
            {
                train = new NeuralGeneticAlgorithm(
                    network, new FanInRandomizer(),
                    new PilotScore(), 500, 0.1, 0.25);
            }

            int epoch = 1;

            for (int i = 0; i < 50; i++)
            {
                train.Iteration();
                Console.WriteLine(@"Epoch #" + epoch + @" Score:" + train.Error);
                epoch++;
            }

            Console.WriteLine(@"\nHow the winning network landed:");
            network = (BasicNetwork) train.Method;
            var pilot = new NeuralPilot(network, true);
            Console.WriteLine(pilot.ScorePilot());
            EncogFramework.Instance.Shutdown();
        }
コード例 #3
0
 public void TestAnneal()
 {
     IMLDataSet trainingData = new BasicMLDataSet(XOR.XORInput, XOR.XORIdeal);
     BasicNetwork network = NetworkUtil.CreateXORNetworkUntrained();
     ICalculateScore score = new TrainingSetScore(trainingData);
     NeuralSimulatedAnnealing anneal = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
     NetworkUtil.TestTraining(anneal, 0.01);
 }
コード例 #4
0
       public static double TrainNetwork(String what,
            FreeformNetwork network, IMLDataSet trainingSet) {
    	ICalculateScore score = new TrainingSetScore(trainingSet);
    	
		IMLTrain trainAlt = new NeuralSimulatedAnnealing(
				network, score, 10, 2, 100);

		IMLTrain trainMain = new FreeformBackPropagation(network, trainingSet,0.00001, 0.0);

		StopTrainingStrategy stop = new StopTrainingStrategy();
		trainMain.AddStrategy(new Greedy());
		trainMain.AddStrategy(new HybridStrategy(trainAlt));
		trainMain.AddStrategy(stop);
		
		EncogUtility.TrainToError(trainMain, 0.01);
    	
        return trainMain.Error;
    }
コード例 #5
0
        private double TrainNetwork(String what, BasicNetwork network, IMLDataSet trainingSet)
        {
            // train the neural network
            ICalculateScore score = new TrainingSetScore(trainingSet);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(
                    network, score, 10, 2, 100);


            IMLTrain trainMain = new Backpropagation(network, trainingSet, 0.00001, 0.0);

            StopTrainingStrategy stop = new StopTrainingStrategy();
            trainMain.AddStrategy(new Greedy());
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);

            int epoch = 0;
            while (!stop.ShouldStop())
            {
                trainMain.Iteration();
                app.WriteLine("Training " + what + ", Epoch #" + epoch + " Error:" + trainMain.Error);
                epoch++;
            }
            return trainMain.Error;
        }
コード例 #6
0
        public void Train(BasicNetwork network, IMLDataSet training)
        {
            IMLTrain trainMain = new LevenbergMarquardtTraining(network, training);
            // train the neural network

            var stop = new StopTrainingStrategy();

            ICalculateScore score = new TrainingSetScore(trainMain.Training);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);

            int epoch = 0;
            while (!stop.ShouldStop() && trainMain.IterationNumber < 1500)
            {
                trainMain.Iteration();
                Console.WriteLine("Training " +  ", Epoch #" + epoch + " Error:" + trainMain.Error);
                epoch++;
            }
        }
コード例 #7
0
        private void trainNetworkBackprop()
        {
            // IMLTrain train = new Backpropagation(this.network, this.input,this.ideal, 0.000001, 0.1);

            IMLDataSet aset = new BasicMLDataSet(input, ideal);
            int epoch = 1;
            // train the neural network
            ICalculateScore score = new TrainingSetScore(aset);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
            IMLTrain trainMain = new Backpropagation(network, aset, 0.001, 0.0);
            StopTrainingStrategy stop = new StopTrainingStrategy();
            var pop = new NEATPopulation(INPUT_SIZE, OUTPUT_SIZE, 1000);
            // train the neural network
            var step = new ActivationStep();
            step.Center = 0.5;
            pop.OutputActivationFunction = step;
            var train = new NEATTraining(score, pop);
            trainMain.AddStrategy(new Greedy());
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);
            trainMain.AddStrategy(new HybridStrategy(train));

            network.ClearContext();

            while (!stop.ShouldStop())
            {
                trainMain.Iteration();
                train.Iteration();
                Console.WriteLine(@"Training " + @"Epoch #" + epoch + @" Error:" + trainMain.Error+ @" Genetic iteration:"+trainAlt.IterationNumber+ @"neat iteration:"+train.IterationNumber );
                epoch++;
            }
        }
コード例 #8
0
 /// <summary>
 /// Constructs this object.
 /// </summary>
 ///
 /// <param name="owner">The owner of this class, that recieves all messages.</param>
 public NeuralSimulatedAnnealingHelper(NeuralSimulatedAnnealing owner)
 {
     _owner         = owner;
     ShouldMinimize = _owner.CalculateScore.ShouldMinimize;
 }
コード例 #9
0
        private double TrainNetwork(String what, BasicNetwork network, IMLDataSet trainingSet, string Method)
        {
            // train the neural network
            ICalculateScore score = new TrainingSetScore(trainingSet);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
            IMLTrain trainMain;
            if (Method.Equals("Leven"))
            {
                Console.WriteLine("Using LevenbergMarquardtTraining");
                trainMain = new LevenbergMarquardtTraining(network, trainingSet);
            }
            else
                 trainMain = new Backpropagation(network, trainingSet);

            var stop = new StopTrainingStrategy();
            trainMain.AddStrategy(new Greedy());
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);

            int epoch = 0;
            while (!stop.ShouldStop())
            {
                trainMain.Iteration();
                app.WriteLine("Training " + what + ", Epoch #" + epoch + " Error:" + trainMain.Error);
                epoch++;
            }
            return trainMain.Error;
        }
コード例 #10
0
        public void TrainPositionPlayer()
        {
            IsTraining = true;

            TrainingIteration = 0;
            var nSteps = (int)Math.Ceiling(1.0 / StepSize);

            ITrainable P1 = GameManager.Player1 as ITrainable;
            var P1Trainer = new PositionStepTrainer(GameManager.Rules);
            NeuralSimulatedAnnealing training = null;

            if (P1 != null)
            {
                training = new NeuralSimulatedAnnealing(P1.Network, P1Trainer, TMax, TMin, nSteps * NStepGames);

                if (ShouldTrainP1)
                    for (int i = 0; i < nSteps; i++)
                    {
                        P1Trainer.Distortion = 1 - i * StepSize;
                        for (int j = 0; j < NStepGames; j++)
                        {
                            training.Iteration();
                            TrainingIteration++;
                        }
                    }
            }
            IsTraining = false;
        }
コード例 #11
0
        public static double TrainNetworks(BasicNetwork network, IMLDataSet minis)
        {
            // train the neural network
            ICalculateScore score = new TrainingSetScore(minis);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
            IMLTrain trainMain = new Backpropagation(network, minis, 0.0001, 0.01);
            StopTrainingStrategy stop = new StopTrainingStrategy(0.0001, 200);
            trainMain.AddStrategy(new Greedy());
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);


            var sw = new Stopwatch();
            sw.Start();
            while (!stop.ShouldStop())
            {
                trainMain.Iteration();
                Console.WriteLine(@"Iteration #:" + trainMain.IterationNumber + @" Error:" + trainMain.Error + @" Genetic Iteration:" + trainAlt.IterationNumber);
            }
            sw.Stop();

            return trainMain.Error;
        }
コード例 #12
0
        public static double TrainNetworks(BasicNetwork network, IMLDataSet minis)
        {
            Backpropagation trainMain = new Backpropagation(network, minis,0.0001,0.6);
            //set the number of threads below.
            trainMain.ThreadCount = 0;
            // train the neural network
            ICalculateScore score = new TrainingSetScore(minis);
            IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100);
           // IMLTrain trainMain = new Backpropagation(network, minis, 0.0001, 0.01);
            
            StopTrainingStrategy stop = new StopTrainingStrategy(0.0001, 200);
            trainMain.AddStrategy(new Greedy());
            trainMain.AddStrategy(new HybridStrategy(trainAlt));
            trainMain.AddStrategy(stop);

            //prune strategy not in GIT!...Removing it.
            //PruneStrategy strategypruning = new PruneStrategy(0.91d, 0.001d, 10, network,minis, 0, 20);
            //trainMain.AddStrategy(strategypruning);

            EncogUtility.TrainConsole(trainMain,network,minis, 15.2);


            var sw = new Stopwatch();
            sw.Start();
            while (!stop.ShouldStop())
            {
                trainMain.Iteration();
                
                Console.WriteLine(@"Iteration #:" + trainMain.IterationNumber + @" Error:" + trainMain.Error + @" Genetic Iteration:" + trainAlt.IterationNumber);
            }
            sw.Stop();
            Console.WriteLine(@"Total elapsed time in seconds:" + TimeSpan.FromMilliseconds(sw.ElapsedMilliseconds).Seconds);

            return trainMain.Error;
        }