public static long BenchmarkEncogFlat(double[][] input, double[][] output) { var network = new FlatNetwork(input[0].Length, HIDDEN_COUNT, 0, output[0].Length, false); network.Randomize(); var trainingSet = new BasicMLDataSet(input, output); var train = new TrainFlatNetworkBackPropagation( network, trainingSet, 0.7, 0.7); var a = new double[2]; var b = new double[1]; var sw = new Stopwatch(); sw.Start(); // run epoch of learning procedure for (int i = 0; i < ITERATIONS; i++) { train.Iteration(); } sw.Stop(); return sw.ElapsedMilliseconds; }