Implements a flat (vector based) neural network in the Encog Engine. This is meant to be a very highly efficient feedforward, or simple recurrent, neural network. It uses a minimum of objects and is designed with one principal in mind-- SPEED. Readability, c reuse, object oriented programming are all secondary in consideration. Vector based neural networks are also very good for GPU processing. The flat network classes will make use of the GPU if you have enabled GPU processing. See the Encog class for more info.
Inheritance: IEngineNeuralNetwork
コード例 #1
0
        /// <summary>
        /// Clone a flat network.
        /// </summary>
        /// <param name="result">The cloned flat network.</param>
        public void CloneFlatNetwork(FlatNetwork result)
        {
            result.inputCount          = this.inputCount;
            result.layerCounts         = EngineArray.ArrayCopy(this.layerCounts);
            result.layerIndex          = EngineArray.ArrayCopy(this.layerIndex);
            result.layerOutput         = EngineArray.ArrayCopy(this.layerOutput);
            result.layerFeedCounts     = EngineArray.ArrayCopy(this.layerFeedCounts);
            result.contextTargetOffset = EngineArray
                                         .ArrayCopy(this.contextTargetOffset);
            result.contextTargetSize = EngineArray
                                       .ArrayCopy(this.contextTargetSize);
            result.layerContextCount = EngineArray
                                       .ArrayCopy(this.layerContextCount);
            result.biasActivation = EngineArray.ArrayCopy(this.biasActivation);
            result.outputCount    = this.outputCount;
            result.weightIndex    = this.weightIndex;
            result.weights        = this.weights;

            result.activationFunctions = new IActivationFunction[this.activationFunctions.Length];
            for (int i = 0; i < result.activationFunctions.Length; i++)
            {
                result.activationFunctions[i] = (IActivationFunction)this.activationFunctions[i].Clone();
            }

            result.beginTraining = this.beginTraining;
            result.endTraining   = this.endTraining;
        }
コード例 #2
0
        /// <summary>
        /// Clone the network.
        /// </summary>
        ///
        /// <returns>A clone of the network.</returns>
        public virtual Object Clone()
        {
            FlatNetwork result = new FlatNetwork();

            CloneFlatNetwork(result);
            return(result);
        }
コード例 #3
0
 /// <summary>
 /// Construct a trainer for flat networks to use the Manhattan update rule.
 /// </summary>
 ///
 /// <param name="network">The network to train.</param>
 /// <param name="training">The training data to use.</param>
 /// <param name="learningRate">The learning rate to use.</param>
 public TrainFlatNetworkManhattan(FlatNetwork network,
         IEngineDataSet training, double learningRate)
     : base(network, training)
 {
     this.learningRate = learningRate;
     this.zeroTolerance = RPROPConst.DEFAULT_ZERO_TOLERANCE;
 }
コード例 #4
0
 /// <summary>
 /// Construct a backprop trainer for flat networks.
 /// </summary>
 ///
 /// <param name="network">The network to train.</param>
 /// <param name="training">The training data.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <param name="momentum">The momentum.</param>
 public TrainFlatNetworkBackPropagation(FlatNetwork network,
         IEngineDataSet training, double learningRate,
         double momentum)
     : base(network, training)
 {
     this.momentum = momentum;
     this.learningRate = learningRate;
     this.lastDelta = new double[network.Weights.Length];
 }
コード例 #5
0
        /// <summary>
        /// Construct a resilient trainer for flat networks.
        /// </summary>
        ///
        /// <param name="network">The network to train.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="zeroTolerance">How close a number should be to zero to be counted as zero.</param>
        /// <param name="initialUpdate">The initial update value.</param>
        /// <param name="maxStep">The maximum step value.</param>
        public TrainFlatNetworkResilient(FlatNetwork network,
                IEngineDataSet training, double zeroTolerance,
                double initialUpdate, double maxStep)
            : base(network, training)
        {
            this.updateValues = new double[network.Weights.Length];
            this.zeroTolerance = zeroTolerance;
            this.maxStep = maxStep;

            for (int i = 0; i < this.updateValues.Length; i++)
            {
                this.updateValues[i] = initialUpdate;
            }
        }
コード例 #6
0
        /// <summary>
        /// Construct a cross validation trainer. 
        /// </summary>
        /// <param name="train">The training.</param>
        /// <param name="k">The number of folds.</param>
        public CrossValidationKFold(ITrain train, int k)
            : base(train.Network, (FoldedDataSet)train.Training)
        {
            this.train = train;
            Folded.Fold(k);

            this.flatNetwork = train.Network.Structure.Flat;

            this.networks = new NetworkFold[k];
            for (int i = 0; i < networks.Length; i++)
            {
                this.networks[i] = new NetworkFold(flatNetwork);
            }

        }
コード例 #7
0
        /// <summary>
        /// Determine if the network is valid for OpenCL.
        /// </summary>
        ///
        /// <param name="network">The network to check.</param>
        /// <returns>The string indicating the error that prevents OpenCL from usingthe network, or null if the network is fine for OpenCL.</returns>
        public override String IsValid(IEngineMachineLearning network)
        {
            if (!(network is FlatNetwork))
            {
                return("Only flat networks are valid to be used for OpenCL");
            }

            FlatNetwork flat = (FlatNetwork)network;

            /* foreach */
            foreach (IActivationFunction activation in flat.ActivationFunctions)
            {
                if (activation.GetOpenCLExpression(true) == null)
                {
                    return("Can't use OpenCL if activation function does not have an OpenCL expression.");
                }
            }

            if (flat.HasSameActivationFunction() == null)
            {
                return("Can't use OpenCL training on a neural network that uses multiple activation functions.");
            }

            bool hasContext = false;

            for (int i = 0; i < flat.LayerCounts.Length; i++)
            {
                if (flat.ContextTargetOffset[i] != 0)
                {
                    hasContext = true;
                }

                if (flat.ContextTargetSize[i] != 0)
                {
                    hasContext = true;
                }
            }

            if (hasContext)
            {
                return("Can't use OpenCL if context neurons are present.");
            }

            return(null);
        }
コード例 #8
0
        /// <summary>
        /// Compile the kernel.
        /// </summary>
        ///
        /// <param name="options">The options.</param>
        /// <param name="network">The network to compile for.</param>
        /// <param name="profile">The OpenCL training profile to use.</param>
        public void Compile(IDictionary<String, String> options,
                OpenCLTrainingProfile profile, FlatNetwork network)
        {

            IActivationFunction activation = network.ActivationFunctions[0];
            StringBuilder source = new StringBuilder();

            source.Append("#define ACTIVATION(x,slope)");
            source.Append(activation.GetOpenCLExpression(false));
            source.Append("\r\n");

            source.Append("#define DERIVATIVE(x,slope)");
            source.Append(activation.GetOpenCLExpression(true));
            source.Append("\r\n");

            source.Append(ResourceLoader.LoadString(SourceName));
            CLSource = source.ToString();

            Compile(options);
            profile.CalculateKernelParams(this, training);
            // setup
            Init(profile);
        }
コード例 #9
0
        /// <summary>
        /// Construct a kernel to train the network.
        /// </summary>
        ///
        /// <param name="device">The OpenCL device to use.</param>
        /// <param name="flat">The network to train.</param>
        /// <param name="training">The training data.</param>
        /// <param name="tempDataSize">How much temp data.</param>
        public KernelNetworkTrain(EncogCLDevice device,
                FlatNetwork flat, IEngineIndexableSet training,
                int tempDataSize)
            : base(device, "Encog.Engine.Resources.KernelNetTrain.txt", "NetworkTrain")
        {
            this.training = training;
            this.trainingLength = (int)this.training.Count;
            this.device = device;
            this.flat = flat;
            this.weightInArray = new float[flat.Weights.Length];
            this.weightOutArray = new float[flat.Weights.Length];
            this.tempDataArray = new float[tempDataSize];
            this.gradients = new float[flat.Weights.Length];

            this.layerDeltaSize = 0;
            for (int i = 0; i < flat.LayerCounts.Length; i++)
            {
                this.layerDeltaSize += flat.LayerCounts[i];
            }

            int inputSize = flat.InputCount;
            int idealSize = flat.OutputCount;

            this.inputArray = new float[inputSize * this.trainingLength];
            this.idealArray = new float[idealSize * this.trainingLength];
            this.paramArray = new int[10];

            IEngineData pair = BasicEngineData.CreatePair(
                    flat.InputCount, flat.OutputCount);

            int inputIndex = 0;
            int idealIndex = 0;

            for (int i = 0; i < this.trainingLength; i++)
            {
                training.GetRecord(i, pair);
                for (int col = 0; col < flat.InputCount; col++)
                {
                    this.inputArray[inputIndex++] = (float)pair.InputArray[col];
                }

                for (int col = 0; col < flat.OutputCount; col++)
                {
                    this.idealArray[idealIndex++] = (float)pair.IdealArray[col];
                }
            }

        }
コード例 #10
0
        /// <summary>
        /// Construct the training object.
        /// </summary>
        ///
        /// <param name="network">The network to train.</param>
        /// <param name="training">The training data to use.</param>
        public TrainFlatNetworkSCG(FlatNetwork network,
                IEngineDataSet training)
            : base(network, training)
        {
            this.success = true;

            this.success = true;
            this.delta = 0;
            this.lambda2 = 0;
            this.lambda = TrainFlatNetworkSCG.FIRST_LAMBDA;
            this.oldError = 0;
            this.magP = 0;
            this.restart = false;

            this.weights = EngineArray.ArrayCopy(network.Weights);
            int numWeights = this.weights.Length;

            // this.gradients = new double[numWeights];
            this.oldWeights = new double[numWeights];
            this.oldGradient = new double[numWeights];

            this.p = new double[numWeights];
            this.r = new double[numWeights];
            this.shouldInit = true;
            
            
        }
コード例 #11
0
        /// <summary>
        /// Clone a flat network.
        /// </summary>
        /// <param name="result">The cloned flat network.</param>
        public void CloneFlatNetwork(FlatNetwork result)
        {
            result.inputCount = this.inputCount;
            result.layerCounts = EngineArray.ArrayCopy(this.layerCounts);
            result.layerIndex = EngineArray.ArrayCopy(this.layerIndex);
            result.layerOutput = EngineArray.ArrayCopy(this.layerOutput);
            result.layerFeedCounts = EngineArray.ArrayCopy(this.layerFeedCounts);
            result.contextTargetOffset = EngineArray
                    .ArrayCopy(this.contextTargetOffset);
            result.contextTargetSize = EngineArray
                    .ArrayCopy(this.contextTargetSize);
            result.layerContextCount = EngineArray
                    .ArrayCopy(this.layerContextCount);
            result.biasActivation = EngineArray.ArrayCopy(this.biasActivation);
            result.outputCount = this.outputCount;
            result.weightIndex = this.weightIndex;
            result.weights = this.weights;

            result.activationFunctions = new IActivationFunction[this.activationFunctions.Length];
            for (int i = 0; i < result.activationFunctions.Length; i++)
            {
                result.activationFunctions[i] = (IActivationFunction)this.activationFunctions[i].Clone();
            }

            result.beginTraining = this.beginTraining;
            result.endTraining = this.endTraining;
        }
コード例 #12
0
 /// <summary>
 /// Clone the network.
 /// </summary>
 ///
 /// <returns>A clone of the network.</returns>
 public virtual Object Clone()
 {
     FlatNetwork result = new FlatNetwork();
     CloneFlatNetwork(result);
     return result;
 }
コード例 #13
0
        /// <summary>
        /// Train a flat network multithreaded.
        /// </summary>
        ///
        /// <param name="network">The network to train.</param>
        /// <param name="training">The training data to use.</param>
        public TrainFlatNetworkProp(FlatNetwork network,
                IEngineDataSet training)
        {

            if (!(training is IEngineIndexableSet))
            {
                throw new EncogEngineError(
                        "Training data must be Indexable for this training type.");
            }

            this.training = training;
            this.network = network;

            this.gradients = new double[this.network.Weights.Length];
            this.lastGradient = new double[this.network.Weights.Length];

            this.indexable = (IEngineIndexableSet)training;
            this.numThreads = 0;
            this.reportedException = null;
        }
コード例 #14
0
        /// <summary>
        /// Train a flat network multithreaded.
        /// </summary>
        ///
        /// <param name="network">The network to train.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="profile">The OpenCL training profile.</param>
        public TrainFlatNetworkOpenCL(FlatNetwork network,
                IEngineDataSet training, OpenCLTrainingProfile profile)
        {

            (new ValidateForOpenCL()).Validate(network);

            if (!(training is IEngineIndexableSet))
            {
                throw new EncogEngineError(
                        "Training data must be Indexable for this training type.");
            }

            if (EncogEngine.Instance.CL == null)
            {
                throw new EncogEngineError(
                        "You must enable OpenCL before using this training type.");

            }

            this.profile = profile;
            this.network = network;
            this.training = (IEngineIndexableSet)training;
        }
コード例 #15
0
        /// <summary>
        /// Construct a gradient worker.
        /// </summary>
        ///
        /// <param name="network">The network to train.</param>
        /// <param name="owner">The owner that is doing the training.</param>
        /// <param name="training">The training data.</param>
        /// <param name="low">The low index to use in the training data.</param>
        /// <param name="high">The high index to use in the training data.</param>
        public GradientWorkerCPU(FlatNetwork network,
                TrainFlatNetworkProp owner,
                IEngineIndexableSet training, int low, int high)
        {
            this.errorCalculation = new ErrorCalculation();
            this.network = network;
            this.training = training;
            this.low = low;
            this.high = high;
            this.owner = owner;

            this.stopwatch = new Stopwatch();

            this.layerDelta = new double[network.LayerOutput.Length];
            this.gradients = new double[network.Weights.Length];
            this.actual = new double[network.OutputCount];

            this.weights = network.Weights;
            this.layerIndex = network.LayerIndex;
            this.layerCounts = network.LayerCounts;
            this.weightIndex = network.WeightIndex;
            this.layerOutput = network.LayerOutput;
            this.layerFeedCounts = network.LayerFeedCounts;

            this.pair = BasicEngineData.CreatePair(network.InputCount,
                    network.OutputCount);
        }
コード例 #16
0
 /// <summary>
 /// Tran a network using RPROP.
 /// </summary>
 ///
 /// <param name="flat">The network to train.</param>
 /// <param name="trainingSet">The training data to use.</param>
 public TrainFlatNetworkResilient(FlatNetwork flat,
         IEngineDataSet trainingSet)
     : this(flat, trainingSet, RPROPConst.DEFAULT_ZERO_TOLERANCE, RPROPConst.DEFAULT_INITIAL_UPDATE, RPROPConst.DEFAULT_MAX_STEP)
 {
 }
コード例 #17
0
        /// <summary>
        /// Create the flat neural network.
        /// </summary>
        public void Flatten()
        {
            bool isRBF = false;
            IDictionary<ILayer, FlatLayer> regular2flat = new Dictionary<ILayer, FlatLayer>();
            IDictionary<FlatLayer, ILayer> flat2regular = new Dictionary<FlatLayer, ILayer>();            
            IList<ObjectPair<ILayer, ILayer>> contexts = new List<ObjectPair<ILayer, ILayer>>();            
            this.flat = null;

            ValidateForFlat val = new ValidateForFlat();

            if (val.IsValid(this.network) == null)
            {
                if (this.layers.Count == 3
                        && this.layers[1] is RadialBasisFunctionLayer)
                {
                    RadialBasisFunctionLayer rbf = (RadialBasisFunctionLayer)this.layers[1];
                    this.flat = new FlatNetworkRBF(this.network.InputCount,
                            rbf.NeuronCount, this.network.OutputCount,
                            rbf.RadialBasisFunction);
                    FlattenWeights();
                    this.flatUpdate = FlatUpdateNeeded.None;
                    return;
                }

                int flatLayerCount = CountNonContext();
                FlatLayer[] flatLayers = new FlatLayer[flatLayerCount];                

                int index = flatLayers.Length - 1;
                foreach (ILayer layer in this.layers)
                {

                    if (layer is ContextLayer)
                    {
                        ISynapse inboundSynapse = network.Structure
                                .FindPreviousSynapseByLayerType(layer,
                                        typeof(BasicLayer));
                        ISynapse outboundSynapse = network
                                .Structure
                                .FindNextSynapseByLayerType(layer, typeof(BasicLayer));

                        if (inboundSynapse == null)
                            throw new NeuralNetworkError(
                                    "Context layer must be connected to by one BasicLayer.");

                        if (outboundSynapse == null)
                            throw new NeuralNetworkError(
                                    "Context layer must connect to by one BasicLayer.");

                        ILayer inbound = inboundSynapse.FromLayer;
                        ILayer outbound = outboundSynapse.ToLayer;

                        contexts
                                .Add(new ObjectPair<ILayer, ILayer>(inbound, outbound));
                    }
                    else
                    {
                        double bias = this.FindNextBias(layer);

                        IActivationFunction activationType;
                        double[] param = new double[1];

                        if (layer.ActivationFunction == null)
                        {
                            activationType = new ActivationLinear();
                            param = new double[1];
                            param[0] = 1;
                        }
                        else
                        {
                            activationType = layer.ActivationFunction;
                            param = layer.ActivationFunction.Params;
                        }

                        FlatLayer flatLayer = new FlatLayer(activationType, layer
                                .NeuronCount, bias, param);

                        regular2flat[layer] = flatLayer;
                        flat2regular[flatLayer] = layer;
                        flatLayers[index--] = flatLayer;
                    }
                }

                // now link up the context layers
                foreach (ObjectPair<ILayer, ILayer> context in contexts)
                {
                    // link the context layer on the FlatLayer
                    ILayer layer = context.B;
                    ISynapse synapse = this.network
                            .Structure
                            .FindPreviousSynapseByLayerType(layer, typeof(BasicLayer));
                    FlatLayer from = regular2flat[context.A];
                    FlatLayer to = regular2flat[synapse.FromLayer];
                    to.ContextFedBy = from;
                }

                this.flat = new FlatNetwork(flatLayers);

                // update the context indexes on the non-flat network
                for (int i = 0; i < flatLayerCount; i++)
                {
                    FlatLayer fedBy = flatLayers[i].ContextFedBy;
                    if (fedBy != null)
                    {
                        ILayer fedBy2 = flat2regular[flatLayers[i + 1]];
                        ISynapse synapse = FindPreviousSynapseByLayerType(fedBy2, typeof(ContextLayer));
                        if (synapse == null)
                            throw new NeuralNetworkError("Can't find parent synapse to context layer.");
                        ContextLayer context = (ContextLayer)synapse.FromLayer;

                        // find fedby index
                        int fedByIndex = -1;
                        for(int j=0;j<flatLayerCount;j++)
                        {
                            if( flatLayers[j]==fedBy )
                            {
                                fedByIndex = j;
                                break;
                            }
                        }

                        if (fedByIndex == -1)
                            throw new NeuralNetworkError("Can't find layer feeding context.");

                        context.FlatContextIndex = this.flat.ContextTargetOffset[fedByIndex];
                    }
                }

                // RBF networks will not train every layer
                if (isRBF)
                {
                    this.flat.EndTraining = flatLayers.Length - 1;
                }

                FlattenWeights();

                if (this.IsConnectionLimited)
                {

                }

                this.flatUpdate = FlatUpdateNeeded.None;
            }
            else
                this.flatUpdate = FlatUpdateNeeded.Never;
        }