/// <summary> /// Create a SIFT using the specific values /// </summary> /// <param name="nFeatures">The desired number of features. Use 0 for un-restricted number of features</param> /// <param name="nOctaveLayers">The number of octave layers. Use 3 for default</param> /// <param name="contrastThreshold">Contrast threshold. Use 0.04 as default</param> /// <param name="edgeThreshold">Detector parameter. Use 10.0 as default</param> /// <param name="sigma">Use 1.6 as default</param> public SIFT( int nFeatures = 0, int nOctaveLayers = 3, double contrastThreshold = 0.04, double edgeThreshold = 10.0, double sigma = 1.6) { _ptr = ContribInvoke.cveSIFTCreate(nFeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, ref _feature2D); }
/// <summary> /// Compute the descriptor given the image and the point location /// </summary> /// <param name="image">The image where the descriptor will be computed from</param> /// <param name="mask">The optional mask, can be null if not needed</param> /// <param name="keyPoints">The keypoint where the descriptor will be computed from. The order of the keypoints might be changed unless the GPU_SURF detector is UP-RIGHT.</param> /// <returns>The image features founded on the keypoint location</returns> public GpuMat ComputeDescriptorsRaw(GpuMat image, GpuMat mask, GpuMat keyPoints) { GpuMat descriptors = new GpuMat(); ContribInvoke.cudaSURFDetectorCompute(_ptr, image, mask, keyPoints, descriptors, true); return(descriptors); }
/// <summary> /// Detect keypoints in the CudaImage /// </summary> /// <param name="img">The image where keypoints will be detected from</param> /// <param name="mask">The optional mask, can be null if not needed</param> /// <returns> /// The keypoints GpuMat that will have 1 row. /// keypoints.at<float[6]>(1, i) contains i'th keypoint /// format: (x, y, size, response, angle, octave) /// </returns> public GpuMat DetectKeyPointsRaw(GpuMat img, GpuMat mask = null) { GpuMat result = new GpuMat(); ContribInvoke.cudaSURFDetectorDetectKeyPoints(_ptr, img, mask, result); return(result); }
public VGG( int desc, float isigma, bool imgNormalize, bool useScaleOrientation, float scaleFactor, bool dscNormalize) { _ptr = ContribInvoke.cveVGGCreate(desc, isigma, imgNormalize, useScaleOrientation, scaleFactor, dscNormalize, ref _feature2D); }
/// <summary> /// Release all the unmanaged resource associated with BRIEF /// </summary> protected override void DisposeObject() { if (_ptr != IntPtr.Zero) { ContribInvoke.cveBriefDescriptorExtractorRelease(ref _ptr); } base.DisposeObject(); }
/// <summary> /// Create DAISY descriptor extractor /// </summary> /// <param name="radius">Radius of the descriptor at the initial scale.</param> /// <param name="qRadius">Amount of radial range division quantity.</param> /// <param name="qTheta">Amount of angular range division quantity.</param> /// <param name="qHist">Amount of gradient orientations range division quantity.</param> /// <param name="norm">Descriptors normalization type.</param> /// <param name="H">optional 3x3 homography matrix used to warp the grid of daisy but sampling keypoints remains unwarped on image</param> /// <param name="interpolation">Switch to disable interpolation for speed improvement at minor quality loss</param> /// <param name="useOrientation">Sample patterns using keypoints orientation, disabled by default.</param> public DAISY(float radius = 15, int qRadius = 3, int qTheta = 8, int qHist = 8, NormalizationType norm = NormalizationType.None, IInputArray H = null, bool interpolation = true, bool useOrientation = false) { using (InputArray iaH = H == null ? InputArray.GetEmpty() : H.GetInputArray()) _ptr = ContribInvoke.cveDAISYCreate(radius, qRadius, qTheta, qHist, norm, iaH, interpolation, useOrientation, ref _feature2D); }
/// <summary> /// Release the unmanaged memory associated with this detector. /// </summary> protected override void DisposeObject() { if (_ptr != IntPtr.Zero) { ContribInvoke.cveStarDetectorRelease(ref _ptr); } base.DisposeObject(); }
/* * /// <summary> * /// Create a Cuda SURF detector using the specific parameters * /// </summary> * /// <param name="detector">The surf detector where the parameters will be borrow from</param> * /// <param name="featuresRatio">Max features = featuresRatio * img.size().srea().</param> * public CudaSURFDetector(MCvSURFParams detector, float featuresRatio = 0.01f) * : this((float)detector.HessianThreshold, detector.NOctaves, detector.NOctaveLayers, (detector.Extended != 0), featuresRatio, (detector.Upright != 0)) * { * }*/ /// <summary> /// Create a Cuda SURF detector /// </summary> /// <param name="hessianThreshold">The interest operator threshold.</param> /// <param name="nOctaves">The number of octaves to process.</param> /// <param name="nOctaveLayers">The number of layers in each octave.</param> /// <param name="extended">True, if generate 128-len descriptors, false - 64-len descriptors.</param> /// <param name="featuresRatio">Max features = featuresRatio * img.size().srea().</param> /// <param name="upright">If set to true, the orientation is not computed for the keypoints</param> public CudaSURFDetector( float hessianThreshold = 100.0f, int nOctaves = 4, int nOctaveLayers = 2, bool extended = true, float featuresRatio = 0.01f, bool upright = false) { _ptr = ContribInvoke.cudaSURFDetectorCreate(hessianThreshold, nOctaves, nOctaveLayers, extended, featuresRatio, upright); }
/// <summary> /// Create a SURF detector using the specific values /// </summary> /// <param name="hessianThresh"> /// Only features with keypoint.hessian larger than that are extracted. /// good default value is ~300-500 (can depend on the average local contrast and sharpness of the image). /// user can further filter out some features based on their hessian values and other characteristics /// </param> /// <param name="extended"> /// false means basic descriptors (64 elements each), /// true means extended descriptors (128 elements each) /// </param> /// <param name="nOctaves"> /// The number of octaves to be used for extraction. /// With each next octave the feature size is doubled /// </param> /// <param name="nOctaveLayers"> /// The number of layers within each octave /// </param> /// <param name="upright"> /// False means that detector computes orientation of each feature. /// True means that the orientation is not computed (which is much, much faster). /// For example, if you match images from a stereo pair, or do image stitching, the matched features likely have very similar angles, and you can speed up feature extraction by setting upright=true.</param> public SURF(double hessianThresh, int nOctaves = 4, int nOctaveLayers = 2, bool extended = true, bool upright = false) { _ptr = ContribInvoke.cveSURFCreate(hessianThresh, nOctaves, nOctaveLayers, extended, upright, ref _feature2D); }
/// <summary> /// Create a BRIEF descriptor extractor. /// </summary> /// <param name="descriptorSize">The size of descriptor. It can be equal 16, 32 or 64 bytes.</param> public BriefDescriptorExtractor(int descriptorSize = 32) { _ptr = ContribInvoke.cveBriefDescriptorExtractorCreate(descriptorSize, ref _feature2D); }
/// <summary> /// Create a locally uniform comparison image descriptor. /// </summary> /// <param name="lucidKernel">Kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth</param> /// <param name="blurKernel">kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth</param> public LUCID(int lucidKernel = 1, int blurKernel = 2) { _ptr = ContribInvoke.cveLUCIDCreate(lucidKernel, blurKernel, ref _feature2D); }
/// <summary> /// Create LATCH descriptor extractor /// </summary> /// <param name="bytes">The size of the descriptor - can be 64, 32, 16, 8, 4, 2 or 1</param> /// <param name="rotationInvariance">Whether or not the descriptor should compensate for orientation changes.</param> /// <param name="halfSsdSize">the size of half of the mini-patches size. For example, if we would like to compare triplets of patches of size 7x7x /// then the half_ssd_size should be (7-1)/2 = 3.</param> public LATCH(int bytes = 32, bool rotationInvariance = true, int halfSsdSize = 3) { _ptr = ContribInvoke.cveLATCHCreate(bytes, rotationInvariance, halfSsdSize, ref _feature2D); }
/// <summary> /// Release the unmanaged resource associate to the Detector /// </summary> protected override void DisposeObject() { ContribInvoke.cudaSURFDetectorRelease(ref _ptr); }
/// <summary> /// Obtain a GpuMat from the keypoints array /// </summary> /// <param name="src">The keypoints array</param> /// <param name="dst">A GpuMat that represent the keypoints</param> public void UploadKeypoints(VectorOfKeyPoint src, GpuMat dst) { ContribInvoke.cudaSURFUploadKeypoints(_ptr, src, dst); }
/// <summary> /// Create a Freak descriptor extractor. /// </summary> /// <param name="orientationNormalized">Enable orientation normalization</param> /// <param name="scaleNormalized">Enable scale normalization</param> /// <param name="patternScale">Scaling of the description pattern</param> /// <param name="nOctaves">Number of octaves covered by the detected keypoints.</param> public Freak(bool orientationNormalized = true, bool scaleNormalized = true, float patternScale = 22.0f, int nOctaves = 4) { _ptr = ContribInvoke.cveFreakCreate(orientationNormalized, scaleNormalized, patternScale, nOctaves, ref _feature2D); }
/// <summary> /// Create a star detector with the specific parameters /// </summary> /// <param name="maxSize"> /// Maximum size of the features. The following /// values of the parameter are supported: /// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128</param> /// <param name="responseThreshold"> /// Threshold for the approximated laplacian, /// used to eliminate weak features. The larger it is, /// the less features will be retrieved /// </param> /// <param name="lineThresholdProjected"> /// Another threshold for the laplacian to eliminate edges. /// The larger the threshold, the more points you get. /// </param> /// <param name="lineThresholdBinarized"> /// Another threshold for the feature size to eliminate edges. /// The larger the threshold, the more points you get.</param> /// <param name="suppressNonmaxSize"> /// /// </param> public StarDetector(int maxSize = 45, int responseThreshold = 30, int lineThresholdProjected = 10, int lineThresholdBinarized = 8, int suppressNonmaxSize = 5) { _ptr = ContribInvoke.cveStarDetectorCreate(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize, ref _feature2D); }
/// <summary> /// Obtain the keypoints array from GpuMat /// </summary> /// <param name="src">The keypoints obtained from DetectKeyPointsRaw</param> /// <param name="dst">The vector of keypoints</param> public void DownloadKeypoints(GpuMat src, VectorOfKeyPoint dst) { ContribInvoke.cudaSURFDownloadKeypoints(_ptr, src, dst); }
public BoostDesc(int desc, bool useScaleOrientation, float scalefactor) { _ptr = ContribInvoke.cveBoostDescCreate(desc, useScaleOrientation, scalefactor, ref _feature2D); }