コード例 #1
0
        public virtual void TestEndToEndSingleUnaries()
        {
            IList <Tree> binarizedTrees = BuildTestTreebank();
            Oracle       oracle         = new Oracle(binarizedTrees, false, Java.Util.Collections.Singleton("ROOT"));

            RunEndToEndTest(binarizedTrees, oracle);
        }
コード例 #2
0
        public virtual void TestBuildParentMap()
        {
            Tree tree = Tree.ValueOf("(A (B foo) (C bar))");
            IDictionary <Tree, Tree> parents = Oracle.BuildParentMap(tree);
            int total = RecursiveTestBuildParentMap(tree, parents);

            NUnit.Framework.Assert.AreEqual(total, parents.Count);
        }
コード例 #3
0
 public TrainTreeProcessor(PerceptronModel _enclosing, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, IList <PerceptronModel.Update> updates, Oracle oracle)
 {
     this._enclosing = _enclosing;
     // this needs to be a synchronized list
     this.binarizedTrees  = binarizedTrees;
     this.transitionLists = transitionLists;
     this.updates         = updates;
     this.oracle          = oracle;
 }
コード例 #4
0
 public static void RunEndToEndTest(IList <Tree> binarizedTrees, Oracle oracle)
 {
     for (int index = 0; index < binarizedTrees.Count; ++index)
     {
         State state = ShiftReduceParser.InitialStateFromGoldTagTree(binarizedTrees[index]);
         while (!state.IsFinished())
         {
             OracleTransition gold = oracle.GoldTransition(index, state);
             NUnit.Framework.Assert.IsTrue(gold.transition != null);
             state = gold.transition.Apply(state);
         }
         NUnit.Framework.Assert.AreEqual(binarizedTrees[index], state.stack.Peek());
     }
 }
コード例 #5
0
        private void TrainModel(string serializedPath, Edu.Stanford.Nlp.Tagger.Common.Tagger tagger, Random random, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, Treebank devTreebank, int nThreads, ICollection <string> allowedFeatures
                                )
        {
            double bestScore     = 0.0;
            int    bestIteration = 0;
            PriorityQueue <ScoredObject <PerceptronModel> > bestModels = null;

            if (op.TrainOptions().averagedModels > 0)
            {
                bestModels = new PriorityQueue <ScoredObject <PerceptronModel> >(op.TrainOptions().averagedModels + 1, ScoredComparator.AscendingComparator);
            }
            IList <int> indices = Generics.NewArrayList();

            for (int i = 0; i < binarizedTrees.Count; ++i)
            {
                indices.Add(i);
            }
            Oracle oracle = null;

            if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.Oracle)
            {
                oracle = new Oracle(binarizedTrees, op.compoundUnaries, rootStates);
            }
            IList <PerceptronModel.Update>           updates = Generics.NewArrayList();
            MulticoreWrapper <int, Pair <int, int> > wrapper = null;

            if (nThreads != 1)
            {
                updates = Java.Util.Collections.SynchronizedList(updates);
                wrapper = new MulticoreWrapper <int, Pair <int, int> >(op.trainOptions.trainingThreads, new PerceptronModel.TrainTreeProcessor(this, binarizedTrees, transitionLists, updates, oracle));
            }
            IntCounter <string> featureFrequencies = null;

            if (op.TrainOptions().featureFrequencyCutoff > 1)
            {
                featureFrequencies = new IntCounter <string>();
            }
            for (int iteration = 1; iteration <= op.trainOptions.trainingIterations; ++iteration)
            {
                Timing trainingTimer = new Timing();
                int    numCorrect    = 0;
                int    numWrong      = 0;
                Java.Util.Collections.Shuffle(indices, random);
                for (int start = 0; start < indices.Count; start += op.trainOptions.batchSize)
                {
                    int end = Math.Min(start + op.trainOptions.batchSize, indices.Count);
                    Triple <IList <PerceptronModel.Update>, int, int> result = TrainBatch(indices.SubList(start, end), binarizedTrees, transitionLists, updates, oracle, wrapper);
                    numCorrect += result.second;
                    numWrong   += result.third;
                    foreach (PerceptronModel.Update update in result.first)
                    {
                        foreach (string feature in update.features)
                        {
                            if (allowedFeatures != null && !allowedFeatures.Contains(feature))
                            {
                                continue;
                            }
                            Weight weights = featureWeights[feature];
                            if (weights == null)
                            {
                                weights = new Weight();
                                featureWeights[feature] = weights;
                            }
                            weights.UpdateWeight(update.goldTransition, update.delta);
                            weights.UpdateWeight(update.predictedTransition, -update.delta);
                            if (featureFrequencies != null)
                            {
                                featureFrequencies.IncrementCount(feature, (update.goldTransition >= 0 && update.predictedTransition >= 0) ? 2 : 1);
                            }
                        }
                    }
                    updates.Clear();
                }
                trainingTimer.Done("Iteration " + iteration);
                log.Info("While training, got " + numCorrect + " transitions correct and " + numWrong + " transitions wrong");
                OutputStats();
                double labelF1 = 0.0;
                if (devTreebank != null)
                {
                    EvaluateTreebank evaluator = new EvaluateTreebank(op, null, new ShiftReduceParser(op, this), tagger);
                    evaluator.TestOnTreebank(devTreebank);
                    labelF1 = evaluator.GetLBScore();
                    log.Info("Label F1 after " + iteration + " iterations: " + labelF1);
                    if (labelF1 > bestScore)
                    {
                        log.Info("New best dev score (previous best " + bestScore + ")");
                        bestScore     = labelF1;
                        bestIteration = iteration;
                    }
                    else
                    {
                        log.Info("Failed to improve for " + (iteration - bestIteration) + " iteration(s) on previous best score of " + bestScore);
                        if (op.trainOptions.stalledIterationLimit > 0 && (iteration - bestIteration >= op.trainOptions.stalledIterationLimit))
                        {
                            log.Info("Failed to improve for too long, stopping training");
                            break;
                        }
                    }
                    log.Info();
                    if (bestModels != null)
                    {
                        bestModels.Add(new ScoredObject <PerceptronModel>(new PerceptronModel(this), labelF1));
                        if (bestModels.Count > op.TrainOptions().averagedModels)
                        {
                            bestModels.Poll();
                        }
                    }
                }
                if (op.TrainOptions().saveIntermediateModels&& serializedPath != null && op.trainOptions.debugOutputFrequency > 0)
                {
                    string            tempName = Sharpen.Runtime.Substring(serializedPath, 0, serializedPath.Length - 7) + "-" + Filename.Format(iteration) + "-" + Nf.Format(labelF1) + ".ser.gz";
                    ShiftReduceParser temp     = new ShiftReduceParser(op, this);
                    temp.SaveModel(tempName);
                }
                // TODO: we could save a cutoff version of the model,
                // especially if we also get a dev set number for it, but that
                // might be overkill
                if (iteration % 10 == 0 && op.TrainOptions().decayLearningRate > 0.0)
                {
                    learningRate *= op.TrainOptions().decayLearningRate;
                }
            }
            // end for iterations
            if (wrapper != null)
            {
                wrapper.Join();
            }
            if (bestModels != null)
            {
                if (op.TrainOptions().cvAveragedModels&& devTreebank != null)
                {
                    IList <ScoredObject <PerceptronModel> > models = Generics.NewArrayList();
                    while (bestModels.Count > 0)
                    {
                        models.Add(bestModels.Poll());
                    }
                    Java.Util.Collections.Reverse(models);
                    double bestF1   = 0.0;
                    int    bestSize = 0;
                    for (int i_1 = 1; i_1 <= models.Count; ++i_1)
                    {
                        log.Info("Testing with " + i_1 + " models averaged together");
                        // TODO: this is kind of ugly, would prefer a separate object
                        AverageScoredModels(models.SubList(0, i_1));
                        ShiftReduceParser temp      = new ShiftReduceParser(op, this);
                        EvaluateTreebank  evaluator = new EvaluateTreebank(temp.GetOp(), null, temp, tagger);
                        evaluator.TestOnTreebank(devTreebank);
                        double labelF1 = evaluator.GetLBScore();
                        log.Info("Label F1 for " + i_1 + " models: " + labelF1);
                        if (labelF1 > bestF1)
                        {
                            bestF1   = labelF1;
                            bestSize = i_1;
                        }
                    }
                    AverageScoredModels(models.SubList(0, bestSize));
                }
                else
                {
                    AverageScoredModels(bestModels);
                }
            }
            // TODO: perhaps we should filter the features and then get dev
            // set scores.  That way we can merge the models which are best
            // after filtering.
            if (featureFrequencies != null)
            {
                FilterFeatures(featureFrequencies.KeysAbove(op.TrainOptions().featureFrequencyCutoff));
            }
            CondenseFeatures();
        }
コード例 #6
0
        /// <summary>
        /// Trains a batch of trees and returns the following: a list of
        /// Update objects, the number of transitions correct, and the number
        /// of transitions wrong.
        /// </summary>
        /// <remarks>
        /// Trains a batch of trees and returns the following: a list of
        /// Update objects, the number of transitions correct, and the number
        /// of transitions wrong.
        /// If the model is trained with multiple threads, it is expected
        /// that a valid MulticoreWrapper is passed in which does the
        /// processing.  In that case, the processing is done on all of the
        /// trees without updating any weights, which allows the results for
        /// multithreaded training to be reproduced.
        /// </remarks>
        private Triple <IList <PerceptronModel.Update>, int, int> TrainBatch(IList <int> indices, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, IList <PerceptronModel.Update> updates, Oracle oracle, MulticoreWrapper <int, Pair <int
                                                                                                                                                                                                                                                                 , int> > wrapper)
        {
            int numCorrect = 0;
            int numWrong   = 0;

            if (op.trainOptions.trainingThreads == 1)
            {
                foreach (int index in indices)
                {
                    Pair <int, int> count = TrainTree(index, binarizedTrees, transitionLists, updates, oracle);
                    numCorrect += count.first;
                    numWrong   += count.second;
                }
            }
            else
            {
                foreach (int index in indices)
                {
                    wrapper.Put(index);
                }
                wrapper.Join(false);
                while (wrapper.Peek())
                {
                    Pair <int, int> result = wrapper.Poll();
                    numCorrect += result.first;
                    numWrong   += result.second;
                }
            }
            return(new Triple <IList <PerceptronModel.Update>, int, int>(updates, numCorrect, numWrong));
        }
コード例 #7
0
        private Pair <int, int> TrainTree(int index, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, IList <PerceptronModel.Update> updates, Oracle oracle)
        {
            int              numCorrect = 0;
            int              numWrong   = 0;
            Tree             tree       = binarizedTrees[index];
            ReorderingOracle reorderer  = null;

            if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderOracle || op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderBeam)
            {
                reorderer = new ReorderingOracle(op);
            }
            // TODO.  This training method seems to be working in that it
            // trains models just like the gold and early termination methods do.
            // However, it causes the feature space to go crazy.  Presumably
            // leaving out features with low weights or low frequencies would
            // significantly help with that.  Otherwise, not sure how to keep
            // it under control.
            if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.Oracle)
            {
                State state = ShiftReduceParser.InitialStateFromGoldTagTree(tree);
                while (!state.IsFinished())
                {
                    IList <string>     features   = featureFactory.Featurize(state);
                    ScoredObject <int> prediction = FindHighestScoringTransition(state, features, true);
                    if (prediction == null)
                    {
                        throw new AssertionError("Did not find a legal transition");
                    }
                    int              predictedNum = prediction.Object();
                    ITransition      predicted    = transitionIndex.Get(predictedNum);
                    OracleTransition gold         = oracle.GoldTransition(index, state);
                    if (gold.IsCorrect(predicted))
                    {
                        numCorrect++;
                        if (gold.transition != null && !gold.transition.Equals(predicted))
                        {
                            int transitionNum = transitionIndex.IndexOf(gold.transition);
                            if (transitionNum < 0)
                            {
                                // TODO: do we want to add unary transitions which are
                                // only possible when the parser has gone off the rails?
                                continue;
                            }
                            updates.Add(new PerceptronModel.Update(features, transitionNum, -1, learningRate));
                        }
                    }
                    else
                    {
                        numWrong++;
                        int transitionNum = -1;
                        if (gold.transition != null)
                        {
                            transitionNum = transitionIndex.IndexOf(gold.transition);
                        }
                        // TODO: this can theoretically result in a -1 gold
                        // transition if the transition exists, but is a
                        // CompoundUnaryTransition which only exists because the
                        // parser is wrong.  Do we want to add those transitions?
                        updates.Add(new PerceptronModel.Update(features, transitionNum, predictedNum, learningRate));
                    }
                    state = predicted.Apply(state);
                }
            }
            else
            {
                if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.Beam || op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderBeam)
                {
                    if (op.TrainOptions().beamSize <= 0)
                    {
                        throw new ArgumentException("Illegal beam size " + op.TrainOptions().beamSize);
                    }
                    IList <ITransition>   transitions = Generics.NewLinkedList(transitionLists[index]);
                    PriorityQueue <State> agenda      = new PriorityQueue <State>(op.TrainOptions().beamSize + 1, ScoredComparator.AscendingComparator);
                    State goldState = ShiftReduceParser.InitialStateFromGoldTagTree(tree);
                    agenda.Add(goldState);
                    // int transitionCount = 0;
                    while (transitions.Count > 0)
                    {
                        ITransition           goldTransition = transitions[0];
                        ITransition           highestScoringTransitionFromGoldState = null;
                        double                highestScoreFromGoldState             = 0.0;
                        PriorityQueue <State> newAgenda = new PriorityQueue <State>(op.TrainOptions().beamSize + 1, ScoredComparator.AscendingComparator);
                        State highestScoringState       = null;
                        State highestCurrentState       = null;
                        foreach (State currentState in agenda)
                        {
                            bool           isGoldState = (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderBeam && goldState.AreTransitionsEqual(currentState));
                            IList <string> features    = featureFactory.Featurize(currentState);
                            ICollection <ScoredObject <int> > stateTransitions = FindHighestScoringTransitions(currentState, features, true, op.TrainOptions().beamSize, null);
                            foreach (ScoredObject <int> transition in stateTransitions)
                            {
                                State newState = transitionIndex.Get(transition.Object()).Apply(currentState, transition.Score());
                                newAgenda.Add(newState);
                                if (newAgenda.Count > op.TrainOptions().beamSize)
                                {
                                    newAgenda.Poll();
                                }
                                if (highestScoringState == null || highestScoringState.Score() < newState.Score())
                                {
                                    highestScoringState = newState;
                                    highestCurrentState = currentState;
                                }
                                if (isGoldState && (highestScoringTransitionFromGoldState == null || transition.Score() > highestScoreFromGoldState))
                                {
                                    highestScoringTransitionFromGoldState = transitionIndex.Get(transition.Object());
                                    highestScoreFromGoldState             = transition.Score();
                                }
                            }
                        }
                        // This can happen if the REORDER_BEAM method backs itself
                        // into a corner, such as transitioning to something that
                        // can't have a FinalizeTransition applied.  This doesn't
                        // happen for the BEAM method because in that case the correct
                        // state (eg one with ROOT) isn't on the agenda so it stops.
                        if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderBeam && highestScoringTransitionFromGoldState == null)
                        {
                            break;
                        }
                        State newGoldState = goldTransition.Apply(goldState, 0.0);
                        // if highest scoring state used the correct transition, no training
                        // otherwise, down the last transition, up the correct
                        if (!newGoldState.AreTransitionsEqual(highestScoringState))
                        {
                            ++numWrong;
                            IList <string> goldFeatures   = featureFactory.Featurize(goldState);
                            int            lastTransition = transitionIndex.IndexOf(highestScoringState.transitions.Peek());
                            updates.Add(new PerceptronModel.Update(featureFactory.Featurize(highestCurrentState), -1, lastTransition, learningRate));
                            updates.Add(new PerceptronModel.Update(goldFeatures, transitionIndex.IndexOf(goldTransition), -1, learningRate));
                            if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.Beam)
                            {
                                // If the correct state has fallen off the agenda, break
                                if (!ShiftReduceUtils.FindStateOnAgenda(newAgenda, newGoldState))
                                {
                                    break;
                                }
                                else
                                {
                                    transitions.Remove(0);
                                }
                            }
                            else
                            {
                                if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderBeam)
                                {
                                    if (!ShiftReduceUtils.FindStateOnAgenda(newAgenda, newGoldState))
                                    {
                                        if (!reorderer.Reorder(goldState, highestScoringTransitionFromGoldState, transitions))
                                        {
                                            break;
                                        }
                                        newGoldState = highestScoringTransitionFromGoldState.Apply(goldState);
                                        if (!ShiftReduceUtils.FindStateOnAgenda(newAgenda, newGoldState))
                                        {
                                            break;
                                        }
                                    }
                                    else
                                    {
                                        transitions.Remove(0);
                                    }
                                }
                            }
                        }
                        else
                        {
                            ++numCorrect;
                            transitions.Remove(0);
                        }
                        goldState = newGoldState;
                        agenda    = newAgenda;
                    }
                }
                else
                {
                    if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.ReorderOracle || op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.EarlyTermination || op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod
                        .Gold)
                    {
                        State state = ShiftReduceParser.InitialStateFromGoldTagTree(tree);
                        IList <ITransition> transitions = transitionLists[index];
                        transitions = Generics.NewLinkedList(transitions);
                        bool keepGoing = true;
                        while (transitions.Count > 0 && keepGoing)
                        {
                            ITransition    transition    = transitions[0];
                            int            transitionNum = transitionIndex.IndexOf(transition);
                            IList <string> features      = featureFactory.Featurize(state);
                            int            predictedNum  = FindHighestScoringTransition(state, features, false).Object();
                            ITransition    predicted     = transitionIndex.Get(predictedNum);
                            if (transitionNum == predictedNum)
                            {
                                transitions.Remove(0);
                                state = transition.Apply(state);
                                numCorrect++;
                            }
                            else
                            {
                                numWrong++;
                                // TODO: allow weighted features, weighted training, etc
                                updates.Add(new PerceptronModel.Update(features, transitionNum, predictedNum, learningRate));
                                switch (op.TrainOptions().trainingMethod)
                                {
                                case ShiftReduceTrainOptions.TrainingMethod.EarlyTermination:
                                {
                                    keepGoing = false;
                                    break;
                                }

                                case ShiftReduceTrainOptions.TrainingMethod.Gold:
                                {
                                    transitions.Remove(0);
                                    state = transition.Apply(state);
                                    break;
                                }

                                case ShiftReduceTrainOptions.TrainingMethod.ReorderOracle:
                                {
                                    keepGoing = reorderer.Reorder(state, predicted, transitions);
                                    if (keepGoing)
                                    {
                                        state = predicted.Apply(state);
                                    }
                                    break;
                                }

                                default:
                                {
                                    throw new ArgumentException("Unexpected method " + op.TrainOptions().trainingMethod);
                                }
                                }
                            }
                        }
                    }
                }
            }
            return(Pair.MakePair(numCorrect, numWrong));
        }