public override void Run() { for (int i = 0; i < 2; i++) { List<string> catalogue = GenericFactory<PatternRecognizer>.Instance.SupportedProducts; foreach (string item in catalogue) { _patternRecognizer = GenericFactory<PatternRecognizer>.Instance.CreateProduct(item); Console.Out.WriteLine(item); } } }
public override void Run() { List<string> itemList = GenericFactory<PatternRecognizer>.Instance.SupportedProducts; foreach (string item in itemList) InstanceManager<PatternRecognizer>.Instance.Register(GenericFactory<PatternRecognizer>.Instance.CreateProduct(item)); //And one more time to check what happens when overwriting :) foreach (string item in itemList) InstanceManager<PatternRecognizer>.Instance.Register(GenericFactory<PatternRecognizer>.Instance.CreateProduct(item)); List<string> instances = InstanceManager<PatternRecognizer>.Instance.RegisteredInstances; _patternRecognizer = InstanceManager<PatternRecognizer>.Instance.Retrieve("LDA"); }
public override void Run() { double[] itemToClassify = new double[2] {2.81,5.46}; double[] result = new double[27]; _trainingPackage = MakeTrainingPackage(); //Now we inintialize and train the LDAPatternRecognizer. //Input dimension is 2 because we have 2 features per feature vector. Output dimension is 27 because //on the final application there will be 27 possible movements including rest (movement 0) _patternRecognizer = GenericFactory<PatternRecognizer>.Instance.CreateProduct("LDA");//new LDAPatternRecognizer(_trainingPackage, 2, 27); //_patternRecognizer.inputDim = 2; //_patternRecognizer.outputDim = 27; _patternRecognizer.trainingPackage = _trainingPackage; _patternRecognizer.activationFunctionIdx = 0; _patternRecognizer.normalizerIdx = 0; _patternRecognizer.RunTraining(); result = (double[])_patternRecognizer.Classify(itemToClassify); }
void ReaModel_PropertyChanged(object sender, PropertyChangedEventArgs e) { switch (e.PropertyName) { case "thresholdRecordingConfig": if (thresholdRecordingConfig != null) { LoadThesholdControls(); } break; case "patternRecognizer": if (!levelControlled) { if (_patternRecognizer != null) recordingConfig = _patternRecognizer.trainingPackage.recordingConfig; else _patternRecognizer = null; this.NotifyPropertyChanged("multipleActivationSupported"); } break; case "levelControlled": if (levelControlled) { recordingConfig = thresholdRecordingConfig; } else if (_patternRecognizer != null) { recordingConfig = _patternRecognizer.trainingPackage.recordingConfig; } else recordingConfig = null; if (_movementGenerator != null) _movementGenerator.levelControlled = levelControlled; break; case "multipleActivation": if (_movementGenerator != null) _movementGenerator.multipleActivation = multipleActivation; break; default: break; } }