private async Task <StringBuilder> Predict(List <List <string> > trainData, List <List <string> > rowNames, List <List <string> > testData) { StringBuilder sb = null; try { //ml algo rule: iterations can also set rowcount and -1 for mlinstructs removed int iRowCount = (Shared.GetRowCount(_iterations, trainData.Count) - 1); //columns of data used and returned in DataResults _actualColNames = Shared.GetActualColNames(_colNames, _depColNames).ToArray(); //ml instructions associated with actual colNames List <string> normTypes = Shared.GetNormTypes(trainData[0], _colNames, _depColNames); //instructions in both row names and datasets List <string> actualMLInstructs = Shared.GetAlgoInstructs(rowNames); actualMLInstructs.AddRange(normTypes); // error allowance double dbPlusorMinus = CalculatorHelpers.ConvertStringToDouble(actualMLInstructs[0]); //converts rows to columns with normalized data List <List <double> > trainDB = Shared.GetNormalizedDData(trainData, this.IndicatorQT, _colNames, _depColNames, normTypes, "F2"); List <List <double> > testDB = Shared.GetNormalizedDData(testData, this.IndicatorQT, _colNames, _depColNames, normTypes, "F2"); //make a new list with same matrix, to be replaced with results int iColCount = testDB.Count; if (_subalgorithm == MATHML_SUBTYPES.subalgorithm_03.ToString().ToString()) { //subalgo02 needs qtm and percent probability of accuracy, qtm, low ci, high ci iColCount = testDB.Count + 5; //normtypes need full columns before insertion normTypes = Shared.FixNormTypes(normTypes, iColCount); } //row count comes from original testdata to account for the instructions row DataResults = CalculatorHelpers.GetList(testData.Count, iColCount); DataResults[0] = normTypes; //dep var output count int numOutput = 1; //less col[0] int numInput = trainDB.Count - 1; int numHidden = 12; //can truncate the data to iRowCount double[][] trainInputs = Shared.MakeInputDData(trainDB, iRowCount, this.IndicatorQT, numInput); //build a neural network NeuralNetwork2 nn2 = new NeuralNetwork2(numInput, numHidden, numOutput); int maxEpochs = iRowCount; double learnRate = 0.001; //train nn2 double[] wts = nn2.Train(trainInputs, maxEpochs, learnRate, sb); //mean squared error double trainErr = nn2.Error(trainInputs); //final model accuracy double trainAcc = nn2.Accuracy(trainInputs, dbPlusorMinus); //add classified test data to DataResults bool bHasNewClassifs = await AddNewClassifications(nn2, testDB, trainAcc, trainErr, iRowCount, dbPlusorMinus, _ciLevel); } catch (Exception ex) { IndicatorQT.ErrorMessage = ex.Message; } return(sb); }