/// <summary> /// 用模板去检测图像中的物体 /// </summary> /// <param name="bmpSource">源图像,需24位或32位真彩位图</param> /// <param name="template">基础分类器模板</param> /// <param name="fern">Fern</param> /// <returns></returns> public static RectangleCollection DetectObject(Bitmap bmpSource, BaseClassifierTemplate template, Fern fern) { RectangleCollection rc = new RectangleCollection(); Bitmap bmp = bmpSource; if (bmpSource.Width < template.BmpWidth || bmpSource.Height < template.BmpHeight) { return(null); } if (bmp != null && (bmp.PixelFormat == PixelFormat.Format24bppRgb || bmp.PixelFormat == PixelFormat.Format32bppRgb || bmp.PixelFormat == PixelFormat.Format32bppArgb)) { UInt32[] featurecode = null; bmp = ImgOper.Grayscale(bmpSource); int[,] igram = ImgOper.Integrogram(bmp, 1); while (template.BmpWidth < bmp.Width && template.BmpHeight < bmp.Height) { for (int y = 0; y < bmp.Height - template.BmpHeight + 1; y += (template.BmpHeight / 10)) { for (int x = 0; x < bmp.Width - template.BmpWidth + 1; x += (template.BmpWidth / 10)) { //int posnum = 0; //int negnum = 0; featurecode = BaseClassifierTemplate.GetFeatureCodeGroup(igram, bmp.Width, bmp.Height, template, x, y); double prob = 0; for (int i = 0; i < template.GroupNum; i++) { prob += fern.Probability[featurecode[i]]; //prob = fern.Probability[featurecode[i]]; //if (prob > 0.5) //{ // posnum++; //} //else //{ // negnum++; //} } prob = prob / template.GroupNum; if (prob > 0.5) //if (posnum > negnum) { Rectangle rect = new Rectangle(x, y, template.BmpWidth, template.BmpHeight); rc.Add(rect); } } } template.ResizeTemplate(1.2); } } return(rc); }
/// <summary> /// 负样本检测专家,专门检测被误判为正的负样本和增加负样本集合 /// </summary> /// <param name="detectCollection">检测模块产生的区域集合</param> /// <param name="trackerRect">跟踪模块产生的区域</param> /// <param name="bmp">被检测的位图</param> /// <returns>返回最可信对象区域</returns> public Rectangle NegativeExpert(RectangleCollection detectCollection, RectangleF trackerRect, Bitmap bmp) { // 复制一个矩形集合是为了让NExpert独立与PExpert RectangleCollection newRectCollection = new RectangleCollection(); if (detectCollection != null) { foreach (Rectangle detectrect in detectCollection) { newRectCollection.Add(detectrect); } } if (trackerRect != Rectangle.Empty) { // 将跟踪到的目标也加入待评估的对象集合 newRectCollection.Add(new Rectangle((int)trackerRect.X, (int)trackerRect.Y, (int)trackerRect.Width, (int)trackerRect.Height)); } DateTime dt = DateTime.Now; // 最可信的对象 Rectangle confidentRect = MinDistanceObject(newRectCollection, bmp); double elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; if (confidentRect != Rectangle.Empty) { newRectCollection.Remove(confidentRect); } dt = DateTime.Now; foreach (Rectangle rect in newRectCollection) { // 判断目标是否确实为背景,正距离归一化系数大于0.5 // 目标加入负样本队列的第一道关,目标必须看起来像负样本(正距离归一化系数大于0.5) if (MinDistance(rect, bmp) > Parameter.MEDIAN_COEF) { double areainsect = AreaProportion(confidentRect, rect); // 与最可信对象交集面积小于AREA_INTERSECT_PROPORTION的为负样本,加入负样本列表 if (areainsect < Parameter.AREA_INTERSECT_PROPORTION) { Bitmap patch = ImgOper.CutImage(bmp, rect.X, rect.Y, rect.Width, rect.Height); TrainNegative(patch); } } } elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; return(confidentRect); }
/// <summary> /// 正样本检测专家,专门检测被误判为负的正样本 /// </summary> /// <param name="detectCollection">检测模块产生的区域集合</param> /// <param name="trackerRect">跟踪模块产生的区域</param> /// <param name="bmp">被检测位图</param> public void PositiveExpert(RectangleCollection detectCollection, RectangleF trackerRect, Bitmap bmp) { double areaproportion = 0; bool nointersect = true; // 指明跟踪模块和检测模块得到的区域是否无交集 if (trackerRect == Rectangle.Empty) { return; } foreach (Rectangle rect in detectCollection) { areaproportion = AreaProportion(trackerRect, rect); if (areaproportion > Parameter.AREA_INTERSECT_PROPORTION) { nointersect = false; break; } } // 没有交集,说明存在被误判为负的正样例 if (nointersect) { // 判断跟踪到的目标是否确实为要识别的物体,正距离归一化系数小于0.5 // 目标加入正样本队列的第一道关,目标必须看起来像正样本(正距离归一化系数小于0.5) if (MinDistance(trackerRect, bmp) < Parameter.MEDIAN_COEF) { for (double lrshift = (-1) * Parameter.SHIFT_BORDER; lrshift < Parameter.SHIFT_BORDER + Parameter.SHIFT_INTERVAL; lrshift += Parameter.SHIFT_INTERVAL) { for (double tbshift = (-1) * Parameter.SHIFT_BORDER; tbshift < Parameter.SHIFT_BORDER + Parameter.SHIFT_INTERVAL; tbshift += Parameter.SHIFT_INTERVAL) { if (trackerRect.X + lrshift >= 0 && trackerRect.X + trackerRect.Width - 1 + lrshift < bmp.Width - 1 && trackerRect.Y + tbshift >= 0 && trackerRect.Y + trackerRect.Height - 1 + tbshift < bmp.Height - 1) { Bitmap patch = ImgOper.CutImage(bmp, (int)(trackerRect.X + lrshift), (int)(trackerRect.Y + tbshift), (int)trackerRect.Width, (int)trackerRect.Height); TrainPositive(patch); } } } } } }
/// <summary> /// 从目标集合中找出最大相关系数的目标,即最可信对象 /// </summary> /// <param name="rectCollection">目标集合</param> /// <param name="bmp">位图</param> /// <returns>最可信对象</returns> public Rectangle MostAssociateObject(RectangleCollection rectCollection, Bitmap bmp) { double coef = 0; double maxcoef = 0; Rectangle confidentRect = Rectangle.Empty; if (rectCollection == null || rectCollection.Count == 0) { return(confidentRect); } foreach (Rectangle rect in rectCollection) { coef = MostAssociate(rect, bmp); if (maxcoef < coef) { maxcoef = coef; confidentRect = rect; } } return(confidentRect); }
/// <summary> /// 在疑似目标集合中找到最可信的目标 /// </summary> /// <param name="rectCollection">目标集合</param> /// <param name="bmp">位图</param> /// <returns>最可信目标</returns> private Rectangle MostConfidentObject(RectangleCollection rectCollection, Bitmap bmp) { double distcoef = double.MaxValue; double mindistcoef = double.MaxValue; Rectangle confidentRect = Rectangle.Empty; if (rectCollection == null || rectCollection.Count == 0) { return(confidentRect); } foreach (Rectangle rect in rectCollection) { distcoef = NearestNeighbour(rect, bmp); if (distcoef < mindistcoef) { mindistcoef = distcoef; confidentRect = rect; } } return(confidentRect); }
private void videoSourcePlayer1_NewFrame(object sender, ref Bitmap image) { Bitmap nowImg = AForge.Imaging.Image.Clone(image); nowImg = ImgOper.Grayscale(nowImg); // 做高斯模糊,取样和检测都会影响到 nowImg = ImgOper.GaussianConvolution(nowImg, Parameter.GAUSSIAN_SIGMA, Parameter.GAUSSIAN_SIZE); // 将图像传递到取样窗口 pri_bmp = AForge.Imaging.Image.Clone(nowImg); double elapse = 0; DateTime dt = DateTime.Now; pri_obj_regions = pri_tld.HogDetect(nowImg); elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; float[] vect = new float[3]; // 描述区域位移和缩放 //nowImg.Save("Image\\VideoSave\\" + DateTime.Now.ToString("yyyyMMddhhmmss") + ".jpg"); ArrayList points = null; if (pri_optical.IPoints == null || pri_tracker_rect == Rectangle.Empty) { pri_optical.I = pri_optical.TransformBmpToLayerImg(nowImg); // 尚未确定跟踪对象,不需要PositiveExpert pri_tracker_rect = pri_tld.NegativeExpert(pri_obj_regions, pri_tracker_rect, nowImg); pri_optical.IPoints = new ArrayList(); points = pri_optical.ChooseRectRandomPoints(pri_tracker_rect, Parameter.INITIAL_POINTS_NUMBER); foreach (PointF pt in points) { pri_optical.IPoints.Add(new PointF(pt.X, pt.Y)); } } else { if (pri_optical.J != null) { pri_optical.I = pri_optical.J; pri_optical.IPoints = pri_optical.JPoints; } pri_optical.J = pri_optical.TransformBmpToLayerImg(nowImg); //pri_optical.JPoints = new ArrayList(); // 跟踪时wx和wy设为3,或者更大 dt = DateTime.Now; vect = pri_optical.ComputerDisplacement(pri_optical.I, pri_optical.J, pri_optical.IPoints, 1, 3, 3, 20, 0.2f, ref pri_optical.IPoints, ref pri_optical.JPoints); elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; if (vect != null) { pri_tracker_rect.X = pri_tracker_rect.X + vect[0]; pri_tracker_rect.Y = pri_tracker_rect.Y + vect[1]; pri_tracker_rect.Width = pri_tracker_rect.Width * vect[2]; pri_tracker_rect.Height = pri_tracker_rect.Height * vect[2]; if (pri_tracker_rect.X < 0) { pri_tracker_rect.Width = pri_tracker_rect.Width + pri_tracker_rect.X; pri_tracker_rect.X = 0; } else if (pri_tracker_rect.X + pri_tracker_rect.Width - 1 > nowImg.Width - 1) { pri_tracker_rect.Width = nowImg.Width - pri_tracker_rect.X; } if (pri_tracker_rect.Y < 0) { pri_tracker_rect.Height = pri_tracker_rect.Height + pri_tracker_rect.Y; pri_tracker_rect.Y = 0; } else if (pri_tracker_rect.Y + pri_tracker_rect.Height - 1 > nowImg.Height - 1) { pri_tracker_rect.Height = nowImg.Height - pri_tracker_rect.Y; } } else { pri_tracker_rect = Rectangle.Empty; } // 在跟踪框被NExpert产生的最可信对象替代前保存原始状态 if (pri_tracker_rect != Rectangle.Empty) { pri_obj_rect = new RectangleF(pri_tracker_rect.X, pri_tracker_rect.Y, pri_tracker_rect.Width, pri_tracker_rect.Height); } dt = DateTime.Now; // 有跟踪对象时,PositvieExpert与NegativeExpert都开始工作 pri_tld.PositiveExpert(pri_obj_regions, pri_tracker_rect, nowImg); elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; dt = DateTime.Now; pri_tracker_rect = pri_tld.NegativeExpert(pri_obj_regions, pri_tracker_rect, nowImg); elapse = DateTime.Now.Subtract(dt).TotalMilliseconds; pri_optical.JPoints = new ArrayList(); points = pri_optical.ChooseRectRandomPoints(pri_tracker_rect, Parameter.INITIAL_POINTS_NUMBER); // 如果pri_tracker_rect为空,则pri_optical.JPoints为空,那么下次跟踪的pri_optical.Ipoints也为空,无法继续跟踪 foreach (PointF pt in points) { pri_optical.JPoints.Add(new PointF(pt.X, pt.Y)); } } Graphics g = Graphics.FromImage(image); Pen pen = new Pen(Color.Red); if (pri_tracker_rect != Rectangle.Empty) { g.DrawRectangle(pen, pri_tracker_rect.X, pri_tracker_rect.Y, pri_tracker_rect.Width, pri_tracker_rect.Height); FontFamily f = new FontFamily("宋体"); Font font = new System.Drawing.Font(f, 12); SolidBrush myBrush = new SolidBrush(Color.Blue); StringBuilder str = new StringBuilder(); if (vect != null) { str.AppendFormat("跟踪框相对位移:({0}, {1}),缩放:{2} \r\n" + "跟踪产生的Rectangle:({3}, {4}, {5}, {6}) \r\n" + "最可信的Rectangle:({7}, {8}, {9}, {10})", vect[0], vect[1], vect[2], pri_obj_rect.X, pri_obj_rect.Y, pri_obj_rect.Width, pri_obj_rect.Height, pri_tracker_rect.X, pri_tracker_rect.Y, pri_tracker_rect.Width, pri_tracker_rect.Height); } else { str.AppendFormat("最可信的Rectangle:({0}, {1}, {2}, {3})", pri_tracker_rect.X, pri_tracker_rect.Y, pri_tracker_rect.Width, pri_tracker_rect.Height); } g.DrawString(str.ToString(), font, myBrush, 0, 0); } //if (pri_obj_regions != null && pri_obj_regions.Count > 0) //{ // foreach (Rectangle rect in pri_obj_regions) // { // g.DrawRectangle(pen, rect.X, rect.Y, rect.Width, rect.Height); // } //} }
/// <summary> /// Hog检测, 被检测到图像自动缩放到BMPLIMITSIZE容忍范围内,并在检测完后将检测框自动放大之前缩小的倍率 /// </summary> /// <param name="bmp">位图</param> public RectangleCollection HogDetect(Bitmap bmp) { RectangleCollection resultCollection = null; if (bmp == null) { return(null); } if (NegCenter == null && PosCenter == null) { return(null); } DateTime dt = DateTime.Now; double elapse = 0; // 针对原图的缩放倍率 double se = 1; if (bmp.Width > Parameter.BMPLIMITSIZE.Width || bmp.Height > Parameter.BMPLIMITSIZE.Height) { se = bmp.Width / (double)Parameter.BMPLIMITSIZE.Width > bmp.Height / (double)Parameter.BMPLIMITSIZE.Height ? bmp.Width / (double)Parameter.BMPLIMITSIZE.Width : bmp.Height / (double)Parameter.BMPLIMITSIZE.Height; bmp = ImgOper.ResizeImage(bmp, (int)(bmp.Width / se), (int)(bmp.Height / se)); } bmp = ImgOper.Grayscale(bmp); //bmp = ImgOper.GaussianConvolution(bmp, GAUSSIAN_SIGMA, GAUSSIAN_SIZE); // 高斯卷积,使得图像平滑 // 所有层的检测结果 ArrayList resultlayers = new ArrayList(); // 初始缩放因子 double scalecoef = 1.0; Bitmap scalebmp = null; int newwidth = (int)(bmp.Width / scalecoef); int newheight = (int)(bmp.Height / scalecoef); // 每层最小距离点的集合 ArrayList idx_layermindistance = new ArrayList(); int cnt = 0; do { scalebmp = ImgOper.ResizeImage(bmp, newwidth, newheight); HogGram hogGram = HogGram.GetHogFromBitmap(scalebmp, Parameter.CELL_SIZE.Width, Parameter.CELL_SIZE.Height, Parameter.PART_NUMBER); NormBlockVectorGram blockGram = new NormBlockVectorGram(hogGram, Parameter.BLOCK_SIZE.Width, Parameter.BLOCK_SIZE.Height); DetectResultLayer detectlayer = new DetectResultLayer(); // !!!!!!检测窗口的像素尺寸必须能被cell尺寸整除!!!!!!像素尺寸除以hog尺寸就是检测窗口的尺寸 detectlayer.DetectResult = blockGram.DetectImgByHogWindow( new Size(Parameter.DETECT_WINDOW_SIZE.Width / Parameter.CELL_SIZE.Width, Parameter.DETECT_WINDOW_SIZE.Height / Parameter.CELL_SIZE.Height), NegCenter, PosCenter, Parameter.POS_DIST_COEF); if (detectlayer.DetectResult == null) { return(null); } detectlayer.ScaleCoef = scalecoef; resultlayers.Add(detectlayer); // 本层检测结果加入队列 scalecoef *= Parameter.SCALE_COEF; // 逐次缩小图像 newwidth = (int)(bmp.Width / scalecoef); newheight = (int)(bmp.Height / scalecoef); cnt++; } while (newwidth > 2 * Parameter.DETECT_WINDOW_SIZE.Width && newheight > 2 * Parameter.DETECT_WINDOW_SIZE.Height); elapse = DateTime.Now.Subtract(dt).TotalSeconds; // 框出所有可能的物体 WindowResult[] wr = null; Rectangle rect; double mindist = -1; WindowResult min_obj = null; double min_scalecoef = 1; resultCollection = new RectangleCollection(); foreach (DetectResultLayer layer in resultlayers) { wr = layer.DetectResult; for (int i = 0; i < wr.Length; i++) { if (wr[i].label == 1) { if (mindist == -1 || mindist > wr[i].PosDistance) { mindist = wr[i].PosDistance; min_obj = wr[i]; min_scalecoef = layer.ScaleCoef; } rect = new Rectangle((int)(wr[i].ImageRegion.X * layer.ScaleCoef * se), (int)(wr[i].ImageRegion.Y * layer.ScaleCoef * se), (int)(wr[i].ImageRegion.Width * layer.ScaleCoef * se), (int)(wr[i].ImageRegion.Height * layer.ScaleCoef * se)); resultCollection.Add(rect); } } } //rect = new Rectangle((int)(min_obj.ImageRegion.X * min_scalecoef * se), // (int)(min_obj.ImageRegion.Y * min_scalecoef * se), // (int)(min_obj.ImageRegion.Width * min_scalecoef * se), // (int)(min_obj.ImageRegion.Height * min_scalecoef * se)); //resultCollection.Add(rect); return(resultCollection); }