public static WaveAudio Tremolo(WaveAudio w, double tremfreq, double amp) { WaveAudio res = new WaveAudio(w.getSampleRate(), w.getNumChannels()); res.LengthInSamples = w.LengthInSamples; double tremeloFreqScale = 2.0 * Math.PI * tremfreq / (double)w.getSampleRate(); for (int ch = 0; ch < w.data.Length; ch++) { for (int i = 0; i < w.data[ch].Length; i++) { double val = w.data[ch][i] * (1 + amp * Math.Sin(tremeloFreqScale * i)); if (val > 1.0) { val = 1.0; } else if (val < -1.0) { val = -1.0; } res.data[ch][i] = val; } } return(res); }
// These work by shifting the signal until it seems to correlate with itself. // In other words if the signal looks very similar to (signal shifted 200 samples) than the fundamental period is probably 200 samples // Note that the algorithm only works well when there's only one prominent fundamental. // This could be optimized by looking at the rate of change to determine a maximum without testing all periods. private static double[] detectPitchCalculation(WaveAudio w, double minHz, double maxHz, int nCandidates, int nResolution, PitchDetectAlgorithm algorithm) { // note that higher frequency means lower period int nLowPeriodInSamples = hzToPeriodInSamples(maxHz, w.getSampleRate()); int nHiPeriodInSamples = hzToPeriodInSamples(minHz, w.getSampleRate()); if (nHiPeriodInSamples <= nLowPeriodInSamples) throw new Exception("Bad range for pitch detection."); if (w.getNumChannels() != 1) throw new Exception("Only mono supported."); double[] samples = w.data[0]; if (samples.Length < nHiPeriodInSamples) throw new Exception("Not enough samples."); // both algorithms work in a similar way // they yield an array of data, and then we find the index at which the value is highest. double[] results = new double[nHiPeriodInSamples - nLowPeriodInSamples]; if (algorithm == PitchDetectAlgorithm.Amdf) { for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, see how close it is to a sample n away. Then sum these. for (int i = 0; i < samples.Length - period; i++) sum += Math.Abs(samples[i] - samples[i + period]); double mean = sum / (double)samples.Length; mean *= -1; //somewhat of a hack. We are trying to find the minimum value, but our findBestCandidates finds the max. value. results[period - nLowPeriodInSamples] = mean; } } else if (algorithm == PitchDetectAlgorithm.Autocorrelation) { for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, find correlation. (If they are far apart, small) for (int i = 0; i < samples.Length - period; i++) sum += samples[i] * samples[i + period]; double mean = sum / (double)samples.Length; results[period - nLowPeriodInSamples] = mean; } } // find the best indices int[] bestIndices = findBestCandidates(nCandidates, ref results); //note findBestCandidates modifies parameter // convert back to Hz double[] res = new double[nCandidates]; for (int i=0; i<nCandidates;i++) res[i] = periodInSamplesToHz(bestIndices[i]+nLowPeriodInSamples, w.getSampleRate()); return res; }
public static WaveAudio Vibrato(WaveAudio wave, double freq, double width) { if (width < 0) { throw new ArgumentException("Factor must >= 0"); } WaveAudio newwave = new WaveAudio(wave.getSampleRate(), wave.getNumChannels()); // do operation for all channels for (int i = 0; i < wave.getNumChannels(); i++) { newwave.data[i] = vibratoChannel(wave.data[i], wave.getSampleRate(), width, freq); } return(newwave); }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] freqRealIn = new double[bufsize / 2], freqRealOut = new double[bufsize / 2]; double[] freqImagIn = new double[bufsize / 2], freqImagOut = new double[bufsize / 2]; double[] fbuffertime = new double[bufsize]; for (int partnum = 0; partnum < src.LengthInSamples / bufsize; partnum++) { //copy into buffer. Array.Copy(src.data[0], partnum * bufsize, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. Array.Copy(ffreqreal, freqRealIn, bufsize / 2); Array.Copy(ffreqimag, freqImagIn, bufsize / 2); this.modifyRectangular(freqRealIn, freqImagIn, freqRealOut, freqImagOut); Array.Copy(freqRealOut, ffreqreal, bufsize / 2); Array.Copy(freqImagOut, ffreqimag, bufsize / 2); double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); Array.Copy(fbufout, 0, wout.data[0], partnum * bufsize, bufsize); } return(wout); }
/// <summary> /// Create a new sound by changing the speed/pitch of the old sound. 2.0 = an octave up, 1.0 = the same, 0.5 = down an octave /// </summary> public static WaveAudio ScalePitchAndDuration(WaveAudio w, double factor) { if (factor < 0) throw new ArgumentException("Factor must >= 0"); WaveAudio res = new WaveAudio(w.getSampleRate(), w.getNumChannels()); // do operation for all channels for (int i = 0; i < w.getNumChannels(); i++) res.data[i] = scalePitchAndDurationChannel(w.data[i], factor); return res; }
public static WaveAudio GetSliceSample(WaveAudio wthis, int nStart, int nEnd) { WaveAudio slice = new WaveAudio(wthis.getSampleRate(), wthis.getNumChannels()); if (nEnd <= nStart || nEnd > wthis.LengthInSamples || nStart < 0) throw new Exception("Invalid slice"); for (int ch = 0; ch < slice.data.Length; ch++) { slice.data[ch] = new double[nEnd - nStart]; Array.Copy(wthis.data[ch], nStart, slice.data[ch], 0, nEnd - nStart); } return slice; }
public static WaveAudio hiPassFilter(WaveAudio w, double factor) //0.5 { WaveAudio ret = new WaveAudio(w.getSampleRate(), w.getNumChannels()); ret.LengthInSamples = w.LengthInSamples; for (int ch = 0; ch < w.getNumChannels(); ch++) { ret.data[ch][0] = w.data[ch][0]; for (int i = 1; i < ret.data[ch].Length; i++) ret.data[ch][i] = factor * ret.data[ch][i - 1] + (factor) * (w.data[ch][i] - w.data[ch][i-1]); } return ret; }
//could also get continuous with window. public static WaveAudio lowPassFilter(WaveAudio w, double factor) //0.5 { //http://en.wikipedia.org/wiki/Low-pass_filter WaveAudio ret = new WaveAudio(w.getSampleRate(), w.getNumChannels()); ret.LengthInSamples = w.LengthInSamples; for (int ch = 0; ch < w.getNumChannels(); ch++) { ret.data[ch][0] = w.data[ch][0]; for (int i=1; i<ret.data[ch].Length; i++) ret.data[ch][i] = (1-factor)*ret.data[ch][i-1] + (factor)*w.data[ch][i]; } return ret; }
public static WaveAudio hiPassFilter(WaveAudio w, double factor) //0.5 { WaveAudio ret = new WaveAudio(w.getSampleRate(), w.getNumChannels()); ret.LengthInSamples = w.LengthInSamples; for (int ch = 0; ch < w.getNumChannels(); ch++) { ret.data[ch][0] = w.data[ch][0]; for (int i = 1; i < ret.data[ch].Length; i++) { ret.data[ch][i] = factor * ret.data[ch][i - 1] + (factor) * (w.data[ch][i] - w.data[ch][i - 1]); } } return(ret); }
public static WaveAudio GetSliceSample(WaveAudio wthis, int nStart, int nEnd) { WaveAudio slice = new WaveAudio(wthis.getSampleRate(), wthis.getNumChannels()); if (nEnd <= nStart || nEnd > wthis.LengthInSamples || nStart < 0) { throw new Exception("Invalid slice"); } for (int ch = 0; ch < slice.data.Length; ch++) { slice.data[ch] = new double[nEnd - nStart]; Array.Copy(wthis.data[ch], nStart, slice.data[ch], 0, nEnd - nStart); } return(slice); }
/// <summary> /// Create a new sound by changing the speed/pitch of the old sound. 2.0 = an octave up, 1.0 = the same, 0.5 = down an octave /// </summary> public static WaveAudio ScalePitchAndDuration(WaveAudio w, double factor) { if (factor < 0) { throw new ArgumentException("Factor must >= 0"); } WaveAudio res = new WaveAudio(w.getSampleRate(), w.getNumChannels()); // do operation for all channels for (int i = 0; i < w.getNumChannels(); i++) { res.data[i] = scalePitchAndDurationChannel(w.data[i], factor); } return(res); }
//could also get continuous with window. public static WaveAudio lowPassFilter(WaveAudio w, double factor) //0.5 { //http://en.wikipedia.org/wiki/Low-pass_filter WaveAudio ret = new WaveAudio(w.getSampleRate(), w.getNumChannels()); ret.LengthInSamples = w.LengthInSamples; for (int ch = 0; ch < w.getNumChannels(); ch++) { ret.data[ch][0] = w.data[ch][0]; for (int i = 1; i < ret.data[ch].Length; i++) { ret.data[ch][i] = (1 - factor) * ret.data[ch][i - 1] + (factor) * w.data[ch][i]; } } return(ret); }
public static WaveAudio Wahwah(WaveAudio wOriginal, double freq, double depth, double freqofs, double res) { double startphaseleft = 0; double startphaseright = startphaseleft + Math.PI; //note that left and right channels should start pi out of phase double freq_scaled = 2.0 * Math.PI * freq / (double)wOriginal.getSampleRate(); WaveAudio w = wOriginal.Clone(); if (w.getNumChannels() == 1) effect_wahwahaud_impl(w.data[0], startphaseleft, freq_scaled, depth, freqofs, res); else { effect_wahwahaud_impl(w.data[0], startphaseleft, freq_scaled, depth, freqofs, res); effect_wahwahaud_impl(w.data[1], startphaseright, freq_scaled, depth, freqofs, res); } return w; }
public static WaveAudio Phaser(WaveAudio wOriginal, double freq, double fb, int depth, int stages, int drywet) { double startphaseleft = 0; double startphaseright = startphaseleft + Math.PI; //note that left and right channels should start pi out of phase double freq_scaled = 2.0 * Math.PI * freq / (double)wOriginal.getSampleRate(); WaveAudio w = wOriginal.Clone(); if (w.getNumChannels() == 1) effect_phaseraud_impl(w.data[0], freq_scaled, startphaseleft, fb, depth, stages, drywet); else { effect_phaseraud_impl(w.data[0], freq_scaled, startphaseleft, fb, depth, stages, drywet); effect_phaseraud_impl(w.data[1], freq_scaled, startphaseright, fb, depth, stages, drywet); } return w; }
// The following create new audio without modifying original public static WaveAudio Concatenate(WaveAudio w1, WaveAudio w2) { // make sure sample rates match we could be nicer and convert automatically if (w1.m_currentSampleRate != w2.m_currentSampleRate) throw new Exception("Sample rates don't match"); if (w2.getNumChannels() != w2.getNumChannels()) throw new Exception("Number of channels don't match"); WaveAudio newwave = new WaveAudio(w1.getSampleRate(), w1.getNumChannels()); newwave.LengthInSamples = w1.LengthInSamples + w2.LengthInSamples; for (int ch = 0; ch < w1.getNumChannels(); ch++) { // source sIndex, destination, destIndex, length Array.Copy(w1.data[ch], 0, newwave.data[ch], 0, w1.data[ch].Length); Array.Copy(w2.data[ch], 0, newwave.data[ch], w1.data[ch].Length, w2.data[0].Length); } return newwave; }
// Beat detection, algorithm put together by Ben Fisher after reading some things // numbers here are arbitrary, based on what seemed to work ok. I'm sure it could be better. public static double GuessBpm(WaveAudio input) { const double minBpm = 60, maxBpm = 150; WaveAudio w = Effects.Derivative(input); // take the derivative of samples. // divide samples into chunks of size 1024. int nBufsize = 1024; double chunkframerate = input.getSampleRate() / nBufsize; // the chunks go by at this rate. // do first FFT double[][] frequencyData = SpectrumContentOverTime(w, 4, nBufsize); // create a new signal in time, consisting of the energy at lowest 1/4 freqs of the chunks. int slength = (int)Fourier.findNearestPowerOfTwo((uint)frequencyData.Length); double[] lowerdata = new double[slength]; for (int i = 0; i < slength; i++) { lowerdata[i] = frequencyData[i][0]; // the bottom 1/4 freqs (index 0-255,0Hz to 5512.5Hz or something ?) } // now take a second FFT on this new signal. Frequency should be range 0.6 to 2.5 Hz (40 to 150 Bpm). double[] reout, imgout; RawSamplesToFrequency(lowerdata, out reout, out imgout); // only keep track of output inside the range we are interested in int minFreqindex = (int)(reout.Length * ((minBpm / 60) / chunkframerate)); int maxFreqindex = (int)(reout.Length * ((maxBpm / 60) / chunkframerate)); // find the best candidate double highestEnergy = -1; int highestEnergyIndex = -1; for (int b = minFreqindex; b < maxFreqindex; b++) { double magnitude = Math.Sqrt(reout[b] * reout[b] + imgout[b] + imgout[b]); if (magnitude > highestEnergy) { highestEnergyIndex = b; highestEnergy = magnitude; } } double freqHertz = chunkframerate * (highestEnergyIndex / (double)reout.Length); double freqInBpm = freqHertz * 60; return(freqInBpm); }
public static WaveAudio Wahwah(WaveAudio wOriginal, double freq, double depth, double freqofs, double res) { double startphaseleft = 0; double startphaseright = startphaseleft + Math.PI; //note that left and right channels should start pi out of phase double freq_scaled = 2.0 * Math.PI * freq / (double)wOriginal.getSampleRate(); WaveAudio w = wOriginal.Clone(); if (w.getNumChannels() == 1) { effect_wahwahaud_impl(w.data[0], startphaseleft, freq_scaled, depth, freqofs, res); } else { effect_wahwahaud_impl(w.data[0], startphaseleft, freq_scaled, depth, freqofs, res); effect_wahwahaud_impl(w.data[1], startphaseright, freq_scaled, depth, freqofs, res); } return(w); }
public static WaveAudio Phaser(WaveAudio wOriginal, double freq, double fb, int depth, int stages, int drywet) { double startphaseleft = 0; double startphaseright = startphaseleft + Math.PI; //note that left and right channels should start pi out of phase double freq_scaled = 2.0 * Math.PI * freq / (double)wOriginal.getSampleRate(); WaveAudio w = wOriginal.Clone(); if (w.getNumChannels() == 1) { effect_phaseraud_impl(w.data[0], freq_scaled, startphaseleft, fb, depth, stages, drywet); } else { effect_phaseraud_impl(w.data[0], freq_scaled, startphaseleft, fb, depth, stages, drywet); effect_phaseraud_impl(w.data[1], freq_scaled, startphaseright, fb, depth, stages, drywet); } return(w); }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] ffreqmaghalfout = new double[bufsize / 2], ffreqanghalfout = new double[bufsize / 2]; double[] ffreqmaghalfin = new double[bufsize / 2], ffreqanghalfin = new double[bufsize / 2]; double[] fbuffertime = new double[bufsize]; for (int partnum = 0; partnum < src.LengthInSamples / bufsize; partnum++) { //copy into buffer. Array.Copy(src.data[0], partnum * bufsize, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. for (int i = 0; i < bufsize / 2; i++) { ffreqmaghalfin[i] = Math.Sqrt(ffreqreal[i] * ffreqreal[i] + ffreqimag[i] * ffreqimag[i]); ffreqanghalfin[i] = Math.Atan2(ffreqimag[i], ffreqreal[i]); } this.modifyAngular(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); if (partnum == 0) { this.drawPlots(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); } for (int i = 0; i < ffreqreal.Length / 2; i++) { ffreqreal[i] = ffreqmaghalfout[i] * Math.Sin(ffreqanghalfout[i]); ffreqimag[i] = ffreqmaghalfout[i] * Math.Cos(ffreqanghalfout[i]); } for (int i = ffreqreal.Length / 2; i < ffreqreal.Length; i++) { ffreqreal[i] = ffreqimag[i] = 0; } double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); Array.Copy(fbufout, 0, wout.data[0], partnum * bufsize, bufsize); } return(wout); }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] ffreqmaghalfout = new double[bufsize / 2], ffreqanghalfout = new double[bufsize / 2]; double[] ffreqmaghalfin = new double[bufsize / 2], ffreqanghalfin = new double[bufsize / 2]; double[] fbuffertime = new double[bufsize]; for (int index = 0; index < src.LengthInSamples - bufsize; index += bufsize / overlap) { //copy into buffer. Array.Copy(src.data[0], index, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. for (int i = 0; i < bufsize / 2; i++) { ffreqmaghalfin[i] = Math.Sqrt(ffreqreal[i] * ffreqreal[i] + ffreqimag[i] * ffreqimag[i]); ffreqanghalfin[i] = Math.Atan2(ffreqimag[i], ffreqreal[i]); } this.modifyAngular(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); for (int i = 0; i < ffreqreal.Length / 2; i++) { ffreqreal[i] = ffreqmaghalfout[i] * Math.Sin(ffreqanghalfout[i]); ffreqimag[i] = ffreqmaghalfout[i] * Math.Cos(ffreqanghalfout[i]); } for (int i = ffreqreal.Length / 2; i < ffreqreal.Length; i++) { ffreqreal[i] = ffreqimag[i] = 0; } double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); WaveAudio ww = new WaveAudio(44100, 1); ww.data[0] = fbufout; //Array.Copy(fbufout, 0, wout.data[0], partnum*bufsize, bufsize); ConstructionUtil.placeAudioRamp(wout, ww, index, (bufsize / overlapRamp)); } return(wout); }
public static void propertytests() { // these aren't the best tests. WaveAudio w1 = new WaveAudio(44100, 2); asserteq(w1.data.Length, 2, "channels"); asserteq(w1.getNumChannels(), 2, "channels"); assert(w1.data[0] != null && w1.data[1] != null, "channels"); assert(w1.data[0].Length == 1 && w1.data[1].Length == 1, "004"); asserteq(w1.getSampleRate(), 44100, "005"); WaveAudio w1m = new WaveAudio(22050, 1); asserteq(w1m.data.Length, 1, "channels"); assert(w1m.data[0] != null, "channels"); asserteq(w1m.data[0].Length, 1, "004"); asserteq(w1m.getSampleRate(), 22050, "005"); // now set some properties w1m.LengthInSamples = 100; asserteq(w1m.data[0].Length, 100); asserteqf(w1m.LengthInSeconds, 100 / (double)w1m.getSampleRate(), 0.001); }
// The following create new audio without modifying original public static WaveAudio Concatenate(WaveAudio w1, WaveAudio w2) { // make sure sample rates match we could be nicer and convert automatically if (w1.m_currentSampleRate != w2.m_currentSampleRate) { throw new Exception("Sample rates don't match"); } if (w2.getNumChannels() != w2.getNumChannels()) { throw new Exception("Number of channels don't match"); } WaveAudio newwave = new WaveAudio(w1.getSampleRate(), w1.getNumChannels()); newwave.LengthInSamples = w1.LengthInSamples + w2.LengthInSamples; for (int ch = 0; ch < w1.getNumChannels(); ch++) { // source sIndex, destination, destIndex, length Array.Copy(w1.data[ch], 0, newwave.data[ch], 0, w1.data[ch].Length); Array.Copy(w2.data[ch], 0, newwave.data[ch], w1.data[ch].Length, w2.data[0].Length); } return(newwave); }
public static WaveAudio Vibrato(WaveAudio wave, double freq, double width) { if (width < 0) throw new ArgumentException("Factor must >= 0"); WaveAudio newwave = new WaveAudio(wave.getSampleRate(), wave.getNumChannels()); // do operation for all channels for (int i = 0; i < wave.getNumChannels(); i++) newwave.data[i] = vibratoChannel(wave.data[i], wave.getSampleRate(), width, freq); return newwave; }
// These work by shifting the signal until it seems to correlate with itself. // In other words if the signal looks very similar to (signal shifted 200 samples) than the fundamental period is probably 200 samples // Note that the algorithm only works well when there's only one prominent fundamental. // This could be optimized by looking at the rate of change to determine a maximum without testing all periods. private static double[] detectPitchCalculation(WaveAudio w, double minHz, double maxHz, int nCandidates, int nResolution, PitchDetectAlgorithm algorithm) { // note that higher frequency means lower period int nLowPeriodInSamples = hzToPeriodInSamples(maxHz, w.getSampleRate()); int nHiPeriodInSamples = hzToPeriodInSamples(minHz, w.getSampleRate()); if (nHiPeriodInSamples <= nLowPeriodInSamples) { throw new Exception("Bad range for pitch detection."); } if (w.getNumChannels() != 1) { throw new Exception("Only mono supported."); } double[] samples = w.data[0]; if (samples.Length < nHiPeriodInSamples) { throw new Exception("Not enough samples."); } // both algorithms work in a similar way // they yield an array of data, and then we find the index at which the value is highest. double[] results = new double[nHiPeriodInSamples - nLowPeriodInSamples]; if (algorithm == PitchDetectAlgorithm.Amdf) { for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, see how close it is to a sample n away. Then sum these. for (int i = 0; i < samples.Length - period; i++) { sum += Math.Abs(samples[i] - samples[i + period]); } double mean = sum / (double)samples.Length; mean *= -1; //somewhat of a hack. We are trying to find the minimum value, but our findBestCandidates finds the max. value. results[period - nLowPeriodInSamples] = mean; } } else if (algorithm == PitchDetectAlgorithm.Autocorrelation) { for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, find correlation. (If they are far apart, small) for (int i = 0; i < samples.Length - period; i++) { sum += samples[i] * samples[i + period]; } double mean = sum / (double)samples.Length; results[period - nLowPeriodInSamples] = mean; } } // find the best indices int[] bestIndices = findBestCandidates(nCandidates, ref results); //note findBestCandidates modifies parameter // convert back to Hz double[] res = new double[nCandidates]; for (int i = 0; i < nCandidates; i++) { res[i] = periodInSamplesToHz(bestIndices[i] + nLowPeriodInSamples, w.getSampleRate()); } return(res); }
public static WaveAudio Tremolo(WaveAudio w, double tremfreq, double amp) { WaveAudio res = new WaveAudio(w.getSampleRate(), w.getNumChannels()); res.LengthInSamples = w.LengthInSamples; double tremeloFreqScale = 2.0 * Math.PI * tremfreq / (double)w.getSampleRate(); for (int ch=0;ch<w.data.Length; ch++) { for (int i = 0; i < w.data[ch].Length; i++) { double val = w.data[ch][i] * (1 + amp * Math.Sin(tremeloFreqScale * i)); if (val > 1.0) val = 1.0; else if (val < -1.0) val = -1.0; res.data[ch][i] = val; } } return res; }
// Beat detection, algorithm put together by Ben Fisher after reading some things // numbers here are arbitrary, based on what seemed to work ok. I'm sure it could be better. public static double GuessBpm(WaveAudio input) { const double minBpm = 60, maxBpm = 150; WaveAudio w = Effects.Derivative(input); // take the derivative of samples. // divide samples into chunks of size 1024. int nBufsize = 1024; double chunkframerate = input.getSampleRate() / nBufsize; // the chunks go by at this rate. // do first FFT double[][] frequencyData = SpectrumContentOverTime(w, 4, nBufsize); // create a new signal in time, consisting of the energy at lowest 1/4 freqs of the chunks. int slength = (int)Fourier.findNearestPowerOfTwo((uint)frequencyData.Length); double[] lowerdata = new double[slength]; for (int i = 0; i < slength; i++) lowerdata[i] = frequencyData[i][0]; // the bottom 1/4 freqs (index 0-255,0Hz to 5512.5Hz or something ?) // now take a second FFT on this new signal. Frequency should be range 0.6 to 2.5 Hz (40 to 150 Bpm). double[] reout, imgout; RawSamplesToFrequency(lowerdata, out reout, out imgout); // only keep track of output inside the range we are interested in int minFreqindex = (int)(reout.Length * ((minBpm / 60) / chunkframerate)); int maxFreqindex = (int)(reout.Length * ((maxBpm / 60) / chunkframerate)); // find the best candidate double highestEnergy = -1; int highestEnergyIndex = -1; for (int b = minFreqindex; b < maxFreqindex; b++) { double magnitude = Math.Sqrt(reout[b] * reout[b] + imgout[b] + imgout[b]); if (magnitude > highestEnergy) { highestEnergyIndex = b; highestEnergy = magnitude; } } double freqHertz = chunkframerate * (highestEnergyIndex / (double)reout.Length); double freqInBpm = freqHertz * 60; return freqInBpm; }
static void iotests_perfile(string strFilename, int nBits, int nChannels, int nRate) { WaveAudio w01 = new WaveAudio(strFilename); asserteq(w01.getNumChannels(), nChannels); asserteq(w01.getSampleRate(), nRate, "011"); asserteqf(w01.LengthInSamples, 90725 * (nRate / 22050), 1.0, "012"); //note give 1.0 tolerance asserteqf(w01.LengthInSeconds, 4.1145124, "013"); asserteq(w01.data.Length, nChannels); asserteq(w01.data[0].Length, w01.LengthInSamples); for (int i = 0; i < nChannels; i++) asserteq(w01.data[i].Length, w01.LengthInSamples); // test converting to other rates / quality w01.SaveWaveFile("..\\..\\testout\\o_" + nRate + "_" + nBits + "_" + nRate + "_" + nChannels + ".wav", nBits); nBits = (nBits == 8) ? 16 : 8; w01.SaveWaveFile("..\\..\\testout\\ot_" + nRate + "_" + nBits + "_" + nRate + "_" + nChannels + ".wav", nBits); }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] freqRealIn=new double[bufsize/2], freqRealOut=new double[bufsize/2]; double[] freqImagIn=new double[bufsize/2], freqImagOut=new double[bufsize/2]; double[] fbuffertime = new double[bufsize]; for (int partnum=0; partnum<src.LengthInSamples/bufsize; partnum++) { //copy into buffer. Array.Copy(src.data[0], partnum*bufsize, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. Array.Copy(ffreqreal, freqRealIn, bufsize/2); Array.Copy(ffreqimag, freqImagIn, bufsize/2); this.modifyRectangular(freqRealIn, freqImagIn, freqRealOut, freqImagOut); Array.Copy(freqRealOut, ffreqreal, bufsize/2); Array.Copy(freqImagOut, ffreqimag, bufsize/2); double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); Array.Copy(fbufout, 0, wout.data[0], partnum*bufsize, bufsize); } return wout; }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] ffreqmaghalfout=new double[bufsize/2], ffreqanghalfout=new double[bufsize/2]; double[] ffreqmaghalfin=new double[bufsize/2], ffreqanghalfin=new double[bufsize/2]; double[] fbuffertime = new double[bufsize]; for (int partnum=0; partnum<src.LengthInSamples/bufsize; partnum++) { //copy into buffer. Array.Copy(src.data[0], partnum*bufsize, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. for (int i=0; i<bufsize/2; i++) { ffreqmaghalfin[i] = Math.Sqrt(ffreqreal[i]*ffreqreal[i]+ffreqimag[i]*ffreqimag[i]); ffreqanghalfin[i] = Math.Atan2(ffreqimag[i], ffreqreal[i]); } this.modifyAngular(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); if (partnum==0) this.drawPlots(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); for (int i=0; i<ffreqreal.Length/2; i++) { ffreqreal[i] = ffreqmaghalfout[i]*Math.Sin(ffreqanghalfout[i]); ffreqimag[i] = ffreqmaghalfout[i]*Math.Cos(ffreqanghalfout[i]); } for (int i=ffreqreal.Length/2; i<ffreqreal.Length; i++) { ffreqreal[i]=ffreqimag[i]=0; } double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); Array.Copy(fbufout, 0, wout.data[0], partnum*bufsize, bufsize); } return wout; }
public WaveAudio doModify(WaveAudio src, int bufsize) { WaveAudio wout = new WaveAudio(src.getSampleRate(), 1); wout.LengthInSamples = src.LengthInSamples; //reuse the buffers. double[] ffreqmaghalfout=new double[bufsize/2], ffreqanghalfout=new double[bufsize/2]; double[] ffreqmaghalfin=new double[bufsize/2], ffreqanghalfin=new double[bufsize/2]; double[] fbuffertime = new double[bufsize]; for (int index=0; index<src.LengthInSamples-bufsize; index+=bufsize/overlap) { //copy into buffer. Array.Copy(src.data[0], index, fbuffertime, 0, bufsize); double[] ffreqreal, ffreqimag; Fourier.RawSamplesToFrequency(fbuffertime, out ffreqreal, out ffreqimag); //we only care about the first half of these results. for (int i=0; i<bufsize/2; i++) { ffreqmaghalfin[i] = Math.Sqrt(ffreqreal[i]*ffreqreal[i]+ffreqimag[i]*ffreqimag[i]); ffreqanghalfin[i] = Math.Atan2(ffreqimag[i], ffreqreal[i]); } this.modifyAngular(ffreqmaghalfin, ffreqanghalfin, ffreqmaghalfout, ffreqanghalfout); for (int i=0; i<ffreqreal.Length/2; i++) { ffreqreal[i] = ffreqmaghalfout[i]*Math.Sin(ffreqanghalfout[i]); ffreqimag[i] = ffreqmaghalfout[i]*Math.Cos(ffreqanghalfout[i]); } for (int i=ffreqreal.Length/2; i<ffreqreal.Length; i++) { ffreqreal[i]=ffreqimag[i]=0; } double[] fbufout; Fourier.RawFrequencyToSamples(out fbufout, ffreqreal, ffreqimag); WaveAudio ww = new WaveAudio(44100, 1); ww.data[0] = fbufout; //Array.Copy(fbufout, 0, wout.data[0], partnum*bufsize, bufsize); ConstructionUtil.placeAudioRamp(wout, ww, index, (bufsize/overlapRamp)); } return wout; }
// Helper function. It's long and gross because either sound could be longer. // I could be more clever and use Math.Max / Min to have WaveAudio longer, WaveAudio shorter // , but at least now it is readable /// <summary> /// Element-wise combination of two audio clips. For example, adding, or modulation. /// </summary> internal static WaveAudio elementWiseCombination(WaveAudio w1, WaveAudio w2, ElementWiseCombinationFn fn) { if (w1.m_currentSampleRate != w2.m_currentSampleRate) { throw new Exception("Sample rates don't match"); } if (w1.getNumChannels() != w2.getNumChannels()) { throw new Exception("Number of channels don't match"); } WaveAudio newwave = new WaveAudio(w1.getSampleRate(), w1.getNumChannels()); newwave.LengthInSamples = Math.Max(w1.LengthInSamples, w2.LengthInSamples); double val; for (int ch = 0; ch < w1.getNumChannels(); ch++) { if (w1.LengthInSamples > w2.LengthInSamples) { for (int i = 0; i < w1.LengthInSamples; i++) { if (i >= w2.LengthInSamples) { val = fn(w1.data[ch][i], 0); } else { val = fn(w1.data[ch][i], w2.data[ch][i]); } if (val > 1.0) { val = 1.0; } else if (val < -1.0) { val = -1.0; } newwave.data[ch][i] = val; } } else { for (int i = 0; i < w2.LengthInSamples; i++) { if (i >= w1.LengthInSamples) { val = fn(0, w2.data[ch][i]); } else { val = fn(w1.data[ch][i], w2.data[ch][i]); } if (val > 1.0) { val = 1.0; } else if (val < -1.0) { val = -1.0; } newwave.data[ch][i] = val; } } } return(newwave); }
// Helper function. It's long and gross because either sound could be longer. // I could be more clever and use Math.Max / Min to have WaveAudio longer, WaveAudio shorter // , but at least now it is readable /// <summary> /// Element-wise combination of two audio clips. For example, adding, or modulation. /// </summary> internal static WaveAudio elementWiseCombination(WaveAudio w1, WaveAudio w2, ElementWiseCombinationFn fn) { if (w1.m_currentSampleRate != w2.m_currentSampleRate) throw new Exception("Sample rates don't match"); if (w1.getNumChannels() != w2.getNumChannels()) throw new Exception("Number of channels don't match"); WaveAudio newwave = new WaveAudio(w1.getSampleRate(), w1.getNumChannels()); newwave.LengthInSamples = Math.Max(w1.LengthInSamples, w2.LengthInSamples); double val; for (int ch = 0; ch < w1.getNumChannels(); ch++) { if (w1.LengthInSamples > w2.LengthInSamples) { for (int i = 0; i < w1.LengthInSamples; i++) { if (i >= w2.LengthInSamples) val = fn(w1.data[ch][i], 0); else val = fn(w1.data[ch][i], w2.data[ch][i]); if (val > 1.0) val = 1.0; else if (val < -1.0) val = -1.0; newwave.data[ch][i] = val; } } else { for (int i = 0; i < w2.LengthInSamples; i++) { if (i >= w1.LengthInSamples) val = fn(0, w2.data[ch][i]); else val = fn(w1.data[ch][i], w2.data[ch][i]); if (val > 1.0) val = 1.0; else if (val < -1.0) val = -1.0; newwave.data[ch][i] = val; } } } return newwave; }