public DeconvolutionLayer(UpSamplingLayer prev_upsampling_l, ConvolutionLayer base_convolution_layer) { this.feature_maps_number = prev_upsampling_l.feature_maps_number; this.feature_maps = new List <DeconvolutionFeatureMap>(); this.inputs = new List <float[, ]>(); this.avg_inputs = new List <float[, ]>(); this.proportion = prev_upsampling_l.feature_maps_number / base_convolution_layer.feature_maps_number; this.kwidth = base_convolution_layer.kwidth; this.kheight = base_convolution_layer.kheight; //boundaries effect this.map_width = kwidth + base_convolution_layer.map_width - 1; this.map_height = kheight + base_convolution_layer.map_height - 1; this.inp_w = prev_upsampling_l.outputwidth; this.inp_h = prev_upsampling_l.outputwidth; //create kernels //previous layer must contain more feature maps or same number of feature maps for (int k = 0; k < base_convolution_layer.feature_maps_number; k++) { avg_inputs.Add(new float[inp_w, inp_h]); feature_maps.Add(new DeconvolutionFeatureMap(avg_inputs[k], base_convolution_layer.feature_maps[k])); } for (int k = 0; k < prev_upsampling_l.feature_maps_number; k++) { inputs.Add(prev_upsampling_l.feature_maps[k].output); } }
public static void save_output_to_file(string name, UpSamplingLayer layer) { for (int k = 0; k < layer.feature_maps_number; k++) { save_matrix_to_file(name + " feature map " + k.ToString() + " ", layer.feature_maps[k].output, layer.outputwidth, layer.outputheight); } }
//input is a picture's matrix public Network(int input_w, int input_h, int FL_feature_maps_number, int fl_kw, int fl_kh, int SL_feature_maps_number, int sl_kw, int sl_kh) { this.FL_feature_maps_number = FL_feature_maps_number; this.SL_feature_maps_number = SL_feature_maps_number; //create first convolutional layer(first layer) FirstLayer = new ConvolutionLayer(FL_feature_maps_number, fl_kw, fl_kh, input_w, input_h); //first subsampling layer(second layer) SecondLayer = new SubsamplingLayer(FirstLayer); //second convolutional layer(third layer).Consists of number of convolutional layers ThirdLayer = new ConvolutionLayer(SL_feature_maps_number, sl_kw, sl_kh, SecondLayer.outputwidth, SecondLayer.outputheight); //connect inputs with previous layer //Parallel conctruction (like RGB) 2 cards of new layer for 1 card of previous layer //like 6/3 = 2 //set topology for second layer List <int> topology = new List <int>(); int counter = 0; for (int i = 0; i < FL_feature_maps_number; i++) { for (int j = 0; j < SL_feature_maps_number / FL_feature_maps_number; j++) { topology.Add(counter); counter++; } SecondLayer.set_link_with_conv_next_layer(ThirdLayer, i, topology); topology.Clear(); } //set topology for third layer for (int i = 0; i < SL_feature_maps_number; i++) { int nextid = i * FL_feature_maps_number / SL_feature_maps_number; ThirdLayer.feature_maps[i].add_input_full_connection(SecondLayer.feature_maps[nextid].output); } /* * //all-to-all connection * List<int> topology = new List<int>(); * for (int i = 0; i < FL_feature_maps_number; i++) * { * for (int j = 0; j < SL_feature_maps_number; j++) * { * topology.Add(j); * } * SecondLayer.set_link_with_conv_next_layer(ThirdLayer, i, topology); * topology.Clear(); * } * * //set topology for third layer * for (int j = 0; j < ThirdLayer.feature_maps_number; j++) * { * for (int i = 0; i < SecondLayer.feature_maps_number; i++) * { * ThirdLayer.feature_maps[j].add_input_full_connection(SecondLayer.feature_maps[i].output); * } * } */ FourthLayer = new SubsamplingLayer(ThirdLayer); FifthLayer = new UpSamplingLayer(FourthLayer); SixthLayer = new DeconvolutionLayer(FifthLayer, ThirdLayer); SeventhLayer = new UpSamplingLayer(SixthLayer, SecondLayer.feature_maps_number); EightsLayer = new DeconvolutionLayer(SeventhLayer, FirstLayer); }