コード例 #1
0
        internal void ptrmapPut(Pgno key, PTRMAP eType, Pgno parent, ref RC rRC)
        {
            if (rRC != RC.OK)
            {
                return;
            }
            Debug.Assert(MutexEx.Held(this.Mutex));
            // The master-journal page number must never be used as a pointer map page
            Debug.Assert(!MemPage.PTRMAP_ISPAGE(this, MemPage.PENDING_BYTE_PAGE(this)));
            Debug.Assert(this.AutoVacuum);
            if (key == 0)
            {
                rRC = SysEx.SQLITE_CORRUPT_BKPT();
                return;
            }
            var iPtrmap = MemPage.PTRMAP_PAGENO(this, key);
            var pDbPage = new PgHdr();  // The pointer map page
            var rc      = this.Pager.Get(iPtrmap, ref pDbPage);

            if (rc != RC.OK)
            {
                rRC = rc;
                return;
            }
            var offset = (int)MemPage.PTRMAP_PTROFFSET(iPtrmap, key);

            if (offset < 0)
            {
                rRC = SysEx.SQLITE_CORRUPT_BKPT();
                goto ptrmap_exit;
            }
            Debug.Assert(offset <= (int)this.UsableSize - 5);
            var pPtrmap = Pager.sqlite3PagerGetData(pDbPage); // The pointer map data

            if (eType != (PTRMAP)pPtrmap[offset] || ConvertEx.Get4(pPtrmap, offset + 1) != parent)
            {
                Btree.TRACE("PTRMAP_UPDATE: {0}->({1},{2})", key, eType, parent);
                rRC = rc = Pager.Write(pDbPage);
                if (rc == RC.OK)
                {
                    pPtrmap[offset] = (byte)eType;
                    ConvertEx.Put4L(pPtrmap, (uint)offset + 1, parent);
                }
            }
ptrmap_exit:
            Pager.Unref(pDbPage);
        }
コード例 #2
0
        internal static RC balance_deeper(MemPage pRoot, ref MemPage ppChild)
        {
            MemPage pChild    = null; // Pointer to a new child page
            Pgno    pgnoChild = 0;    // Page number of the new child page
            var     pBt       = pRoot.Shared;

            Debug.Assert(pRoot.NOverflows > 0);
            Debug.Assert(MutexEx.Held(pBt.Mutex));
            // Make pRoot, the root page of the b-tree, writable. Allocate a new page that will become the new right-child of pPage. Copy the contents
            // of the node stored on pRoot into the new child page.
            var rc = Pager.Write(pRoot.DbPage);

            if (rc == RC.OK)
            {
                rc = pBt.allocateBtreePage(ref pChild, ref pgnoChild, pRoot.ID, 0);
                copyNodeContent(pRoot, pChild, ref rc);
#if !SQLITE_OMIT_AUTOVACUUM
                if (pBt.AutoVacuum)
#else
                if (false)
#endif
                {
                    pBt.ptrmapPut(pgnoChild, PTRMAP.BTREE, pRoot.ID, ref rc);
                }
            }
            if (rc != RC.OK)
            {
                ppChild = null;
                pChild.releasePage();
                return(rc);
            }
            Debug.Assert(Pager.IsPageWriteable(pChild.DbPage));
            Debug.Assert(Pager.IsPageWriteable(pRoot.DbPage));
            Debug.Assert(pChild.Cells == pRoot.Cells);
            Btree.TRACE("BALANCE: copy root %d into %d\n", pRoot.ID, pChild.ID);
            // Copy the overflow cells from pRoot to pChild
            Array.Copy(pRoot.Overflows, pChild.Overflows, pRoot.NOverflows);
            pChild.NOverflows = pRoot.NOverflows;
            // Zero the contents of pRoot. Then install pChild as the right-child.
            pRoot.zeroPage(pChild.Data[0] & ~Btree.PTF_LEAF);
            ConvertEx.Put4L(pRoot.Data, pRoot.HeaderOffset + 8, pgnoChild);
            ppChild = pChild;
            return(RC.OK);
        }
コード例 #3
0
        internal static RC balance_nonroot(MemPage pParent, int iParentIdx, byte[] aOvflSpace, int isRoot)
        {
            var      apOld  = new MemPage[NB];     // pPage and up to two siblings
            var      apCopy = new MemPage[NB];     // Private copies of apOld[] pages
            var      apNew  = new MemPage[NB + 2]; // pPage and up to NB siblings after balancing
            var      apDiv  = new int[NB - 1];     // Divider cells in pParent
            var      cntNew = new int[NB + 2];     // Index in aCell[] of cell after i-th page
            var      szNew  = new int[NB + 2];     // Combined size of cells place on i-th page
            var      szCell = new ushort[1];       // Local size of all cells in apCell[]
            BtShared pBt;                          // The whole database
            int      nCell     = 0;                // Number of cells in apCell[]
            int      nMaxCells = 0;                // Allocated size of apCell, szCell, aFrom.
            int      nNew      = 0;                // Number of pages in apNew[]
            ushort   leafCorrection;               // 4 if pPage is a leaf.  0 if not
            int      leafData;                     // True if pPage is a leaf of a LEAFDATA tree
            int      usableSpace;                  // Bytes in pPage beyond the header
            int      pageFlags;                    // Value of pPage.aData[0]
            int      subtotal;                     // Subtotal of bytes in cells on one page
            int      iOvflSpace = 0;               // First unused byte of aOvflSpace[]

            //int szScratch;               // Size of scratch memory requested
            byte[][] apCell = null;                 // All cells begin balanced
            //
            pBt = pParent.Shared;
            Debug.Assert(MutexEx.Held(pBt.Mutex));
            Debug.Assert(Pager.IsPageWriteable(pParent.DbPage));
#if false
            Btree.TRACE("BALANCE: begin page %d child of %d\n", pPage.pgno, pParent.pgno);
#endif
            // At this point pParent may have at most one overflow cell. And if this overflow cell is present, it must be the cell with
            // index iParentIdx. This scenario comes about when this function is called (indirectly) from sqlite3BtreeDelete().
            Debug.Assert(pParent.NOverflows == 0 || pParent.NOverflows == 1);
            Debug.Assert(pParent.NOverflows == 0 || pParent.Overflows[0].Index == iParentIdx);
            // Find the sibling pages to balance. Also locate the cells in pParent that divide the siblings. An attempt is made to find NN siblings on
            // either side of pPage. More siblings are taken from one side, however, if there are fewer than NN siblings on the other side. If pParent
            // has NB or fewer children then all children of pParent are taken.
            // This loop also drops the divider cells from the parent page. This way, the remainder of the function does not have to deal with any
            // overflow cells in the parent page, since if any existed they will have already been removed.
            int nOld;  // Number of pages in apOld[]
            int nxDiv; // Next divider slot in pParent.aCell[]
            var i = pParent.NOverflows + pParent.Cells;
            if (i < 2)
            {
                nxDiv = 0;
                nOld  = i + 1;
            }
            else
            {
                nOld = 3;
                if (iParentIdx == 0)
                {
                    nxDiv = 0;
                }
                else if (iParentIdx == i)
                {
                    nxDiv = i - 2;
                }
                else
                {
                    nxDiv = iParentIdx - 1;
                }
                i = 2;
            }
            var pRight = ((i + nxDiv - pParent.NOverflows) == pParent.Cells ? pParent.HeaderOffset + 8 : pParent.FindCell(i + nxDiv - pParent.NOverflows)); // Location in parent of right-sibling pointer
            var pgno   = (Pgno)ConvertEx.Get4(pParent.Data, pRight);
            var rc     = RC.OK;
            while (true)
            {
                rc = pBt.getAndInitPage(pgno, ref apOld[i]);
                if (rc != RC.OK)
                {
                    goto balance_cleanup;
                }
                nMaxCells += 1 + apOld[i].Cells + apOld[i].NOverflows;
                if (i-- == 0)
                {
                    break;
                }
                if (i + nxDiv == pParent.Overflows[0].Index && pParent.NOverflows != 0)
                {
                    apDiv[i]           = 0;
                    pgno               = ConvertEx.Get4(pParent.Overflows[0].Cell, apDiv[i]);
                    szNew[i]           = pParent.cellSizePtr(apDiv[i]);
                    pParent.NOverflows = 0;
                }
                else
                {
                    apDiv[i] = pParent.FindCell(i + nxDiv - pParent.NOverflows);
                    pgno     = ConvertEx.Get4(pParent.Data, apDiv[i]);
                    szNew[i] = pParent.cellSizePtr(apDiv[i]);
                    // Drop the cell from the parent page. apDiv[i] still points to the cell within the parent, even though it has been dropped.
                    // This is safe because dropping a cell only overwrites the first four bytes of it, and this function does not need the first
                    // four bytes of the divider cell. So the pointer is safe to use later on.
                    //
                    // Unless SQLite is compiled in secure-delete mode. In this case, the dropCell() routine will overwrite the entire cell with zeroes.
                    // In this case, temporarily copy the cell into the aOvflSpace[] buffer. It will be copied out again as soon as the aSpace[] buffer
                    // is allocated.
                    //if (pBt.secureDelete)
                    //{
                    //  int iOff = (int)(apDiv[i]) - (int)(pParent.aData); //SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent.aData);
                    //         if( (iOff+szNew[i])>(int)pBt->usableSize )
                    //  {
                    //    rc = SQLITE_CORRUPT_BKPT();
                    //    Array.Clear(apOld[0].aData,0,apOld[0].aData.Length); //memset(apOld, 0, (i + 1) * sizeof(MemPage*));
                    //    goto balance_cleanup;
                    //  }
                    //  else
                    //  {
                    //    memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
                    //    apDiv[i] = &aOvflSpace[apDiv[i] - pParent.aData];
                    //  }
                    //}
                    pParent.dropCell(i + nxDiv - pParent.NOverflows, szNew[i], ref rc);
                }
            }
            // Make nMaxCells a multiple of 4 in order to preserve 8-byte alignment
            nMaxCells = (nMaxCells + 3) & ~3;
            // Allocate space for memory structures
            apCell = MallocEx.sqlite3ScratchMalloc(apCell, nMaxCells);
            if (szCell.Length < nMaxCells)
            {
                Array.Resize(ref szCell, nMaxCells);
            }
            // Load pointers to all cells on sibling pages and the divider cells into the local apCell[] array.  Make copies of the divider cells
            // into space obtained from aSpace1[] and remove the the divider Cells from pParent.
            // If the siblings are on leaf pages, then the child pointers of the divider cells are stripped from the cells before they are copied
            // into aSpace1[].  In this way, all cells in apCell[] are without child pointers.  If siblings are not leaves, then all cell in
            // apCell[] include child pointers.  Either way, all cells in apCell[] are alike.
            // leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
            //       leafData:  1 if pPage holds key+data and pParent holds only keys.
            leafCorrection = (ushort)(apOld[0].Leaf * 4);
            leafData       = apOld[0].HasData;
            int j;
            for (i = 0; i < nOld; i++)
            {
                // Before doing anything else, take a copy of the i'th original sibling The rest of this function will use data from the copies rather
                // that the original pages since the original pages will be in the process of being overwritten.
                var pOld  = apCopy[i] = apOld[i].Clone();
                var limit = pOld.Cells + pOld.NOverflows;
                if (pOld.NOverflows > 0 || true)
                {
                    for (j = 0; j < limit; j++)
                    {
                        Debug.Assert(nCell < nMaxCells);
                        var iFOFC = pOld.FindOverflowCell(j);
                        szCell[nCell] = pOld.cellSizePtr(iFOFC);
                        // Copy the Data Locally
                        if (apCell[nCell] == null)
                        {
                            apCell[nCell] = new byte[szCell[nCell]];
                        }
                        else if (apCell[nCell].Length < szCell[nCell])
                        {
                            Array.Resize(ref apCell[nCell], szCell[nCell]);
                        }
                        if (iFOFC < 0)  // Overflow Cell
                        {
                            Buffer.BlockCopy(pOld.Overflows[-(iFOFC + 1)].Cell, 0, apCell[nCell], 0, szCell[nCell]);
                        }
                        else
                        {
                            Buffer.BlockCopy(pOld.Data, iFOFC, apCell[nCell], 0, szCell[nCell]);
                        }
                        nCell++;
                    }
                }
                else
                {
                    var aData      = pOld.Data;
                    var maskPage   = pOld.MaskPage;
                    var cellOffset = pOld.CellOffset;
                    for (j = 0; j < limit; j++)
                    {
                        Debugger.Break();
                        Debug.Assert(nCell < nMaxCells);
                        apCell[nCell] = FindCellv2(aData, maskPage, cellOffset, j);
                        szCell[nCell] = pOld.cellSizePtr(apCell[nCell]);
                        nCell++;
                    }
                }
                if (i < nOld - 1 && 0 == leafData)
                {
                    var sz    = (ushort)szNew[i];
                    var pTemp = MallocEx.sqlite3Malloc(sz + leafCorrection);
                    Debug.Assert(nCell < nMaxCells);
                    szCell[nCell] = sz;
                    Debug.Assert(sz <= pBt.MaxLocal + 23);
                    Buffer.BlockCopy(pParent.Data, apDiv[i], pTemp, 0, sz);
                    if (apCell[nCell] == null || apCell[nCell].Length < sz)
                    {
                        Array.Resize(ref apCell[nCell], sz);
                    }
                    Buffer.BlockCopy(pTemp, leafCorrection, apCell[nCell], 0, sz);
                    Debug.Assert(leafCorrection == 0 || leafCorrection == 4);
                    szCell[nCell] = (ushort)(szCell[nCell] - leafCorrection);
                    if (0 == pOld.Leaf)
                    {
                        Debug.Assert(leafCorrection == 0);
                        Debug.Assert(pOld.HeaderOffset == 0);
                        // The right pointer of the child page pOld becomes the left pointer of the divider cell
                        Buffer.BlockCopy(pOld.Data, 8, apCell[nCell], 0, 4);//memcpy( apCell[nCell], ref pOld.aData[8], 4 );
                    }
                    else
                    {
                        Debug.Assert(leafCorrection == 4);
                        if (szCell[nCell] < 4)
                        {
                            // Do not allow any cells smaller than 4 bytes.
                            szCell[nCell] = 4;
                        }
                    }
                    nCell++;
                }
            }
            // Figure out the number of pages needed to hold all nCell cells. Store this number in "k".  Also compute szNew[] which is the total
            // size of all cells on the i-th page and cntNew[] which is the index in apCell[] of the cell that divides page i from page i+1.
            // cntNew[k] should equal nCell.
            // Values computed by this block:
            //           k: The total number of sibling pages
            //    szNew[i]: Spaced used on the i-th sibling page.
            //   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
            //              the right of the i-th sibling page.
            // usableSpace: Number of bytes of space available on each sibling.
            usableSpace = (int)pBt.UsableSize - 12 + leafCorrection;
            int k;
            for (subtotal = k = i = 0; i < nCell; i++)
            {
                Debug.Assert(i < nMaxCells);
                subtotal += szCell[i] + 2;
                if (subtotal > usableSpace)
                {
                    szNew[k]  = subtotal - szCell[i];
                    cntNew[k] = i;
                    if (leafData != 0)
                    {
                        i--;
                    }
                    subtotal = 0;
                    k++;
                    if (k > NB + 1)
                    {
                        rc = SysEx.SQLITE_CORRUPT_BKPT();
                        goto balance_cleanup;
                    }
                }
            }
            szNew[k]  = subtotal;
            cntNew[k] = nCell;
            k++;
            // The packing computed by the previous block is biased toward the siblings on the left side.  The left siblings are always nearly full, while the
            // right-most sibling might be nearly empty.  This block of code attempts to adjust the packing of siblings to get a better balance.
            //
            // This adjustment is more than an optimization.  The packing above might be so out of balance as to be illegal.  For example, the right-most
            // sibling might be completely empty.  This adjustment is not optional.
            for (i = k - 1; i > 0; i--)
            {
                var szRight = szNew[i];          // Size of sibling on the right
                var szLeft  = szNew[i - 1];      // Size of sibling on the left
                var r       = cntNew[i - 1] - 1; // Index of right-most cell in left sibling
                var d       = r + 1 - leafData;  // Index of first cell to the left of right sibling
                Debug.Assert(d < nMaxCells);
                Debug.Assert(r < nMaxCells);
                while (szRight == 0 || szRight + szCell[d] + 2 <= szLeft - (szCell[r] + 2))
                {
                    szRight += szCell[d] + 2;
                    szLeft  -= szCell[r] + 2;
                    cntNew[i - 1]--;
                    r = cntNew[i - 1] - 1;
                    d = r + 1 - leafData;
                }
                szNew[i]     = szRight;
                szNew[i - 1] = szLeft;
            }
            // Either we found one or more cells (cntnew[0])>0) or pPage is a virtual root page.  A virtual root page is when the real root
            // page is page 1 and we are the only child of that page.
            Debug.Assert(cntNew[0] > 0 || (pParent.ID == 1 && pParent.Cells == 0));
            Btree.TRACE("BALANCE: old: %d %d %d  ", apOld[0].ID, (nOld >= 2 ? apOld[1].ID : 0), (nOld >= 3 ? apOld[2].ID : 0));
            // Allocate k new pages.  Reuse old pages where possible.
            if (apOld[0].ID <= 1)
            {
                rc = SysEx.SQLITE_CORRUPT_BKPT();
                goto balance_cleanup;
            }
            pageFlags = apOld[0].Data[0];
            for (i = 0; i < k; i++)
            {
                var pNew = new MemPage();
                if (i < nOld)
                {
                    pNew     = apNew[i] = apOld[i];
                    apOld[i] = null;
                    rc       = Pager.Write(pNew.DbPage);
                    nNew++;
                    if (rc != RC.OK)
                    {
                        goto balance_cleanup;
                    }
                }
                else
                {
                    Debug.Assert(i > 0);
                    rc = pBt.allocateBtreePage(ref pNew, ref pgno, pgno, 0);
                    if (rc != 0)
                    {
                        goto balance_cleanup;
                    }
                    apNew[i] = pNew;
                    nNew++;

                    // Set the pointer-map entry for the new sibling page.
#if !SQLITE_OMIT_AUTOVACUUM
                    if (pBt.AutoVacuum)
#else
                    if (false)
#endif
                    {
                        pBt.ptrmapPut(pNew.ID, PTRMAP.BTREE, pParent.ID, ref rc);
                        if (rc != RC.OK)
                        {
                            goto balance_cleanup;
                        }
                    }
                }
            }
            // Free any old pages that were not reused as new pages.
            while (i < nOld)
            {
                apOld[i].freePage(ref rc);
                if (rc != RC.OK)
                {
                    goto balance_cleanup;
                }
                apOld[i].releasePage();
                apOld[i] = null;
                i++;
            }
            // Put the new pages in accending order.  This helps to keep entries in the disk file in order so that a scan
            // of the table is a linear scan through the file.  That in turn helps the operating system to deliver pages
            // from the disk more rapidly.
            // An O(n^2) insertion sort algorithm is used, but since n is never more than NB (a small constant), that should
            // not be a problem.
            // When NB==3, this one optimization makes the database about 25% faster for large insertions and deletions.
            for (i = 0; i < k - 1; i++)
            {
                var minV = (int)apNew[i].ID;
                var minI = i;
                for (j = i + 1; j < k; j++)
                {
                    if (apNew[j].ID < (uint)minV)
                    {
                        minI = j;
                        minV = (int)apNew[j].ID;
                    }
                }
                if (minI > i)
                {
                    var pT = apNew[i];
                    apNew[i]    = apNew[minI];
                    apNew[minI] = pT;
                }
            }
            Btree.TRACE("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", apNew[0].ID, szNew[0],
                        (nNew >= 2 ? apNew[1].ID : 0), (nNew >= 2 ? szNew[1] : 0),
                        (nNew >= 3 ? apNew[2].ID : 0), (nNew >= 3 ? szNew[2] : 0),
                        (nNew >= 4 ? apNew[3].ID : 0), (nNew >= 4 ? szNew[3] : 0),
                        (nNew >= 5 ? apNew[4].ID : 0), (nNew >= 5 ? szNew[4] : 0));
            Debug.Assert(Pager.IsPageWriteable(pParent.DbPage));
            ConvertEx.Put4L(pParent.Data, pRight, apNew[nNew - 1].ID);
            // Evenly distribute the data in apCell[] across the new pages. Insert divider cells into pParent as necessary.
            j = 0;
            for (i = 0; i < nNew; i++)
            {
                // Assemble the new sibling page.
                MemPage pNew = apNew[i];
                Debug.Assert(j < nMaxCells);
                pNew.zeroPage(pageFlags);
                pNew.assemblePage(cntNew[i] - j, apCell, szCell, j);
                Debug.Assert(pNew.Cells > 0 || (nNew == 1 && cntNew[0] == 0));
                Debug.Assert(pNew.NOverflows == 0);
                j = cntNew[i];
                // If the sibling page assembled above was not the right-most sibling, insert a divider cell into the parent page.
                Debug.Assert(i < nNew - 1 || j == nCell);
                if (j < nCell)
                {
                    Debug.Assert(j < nMaxCells);
                    var pCell = apCell[j];
                    var sz    = szCell[j] + leafCorrection;
                    var pTemp = MallocEx.sqlite3Malloc(sz);
                    if (pNew.Leaf == 0)
                    {
                        Buffer.BlockCopy(pCell, 0, pNew.Data, 8, 4);
                    }
                    else if (leafData != 0)
                    {
                        // If the tree is a leaf-data tree, and the siblings are leaves, then there is no divider cell in apCell[]. Instead, the divider
                        // cell consists of the integer key for the right-most cell of the sibling-page assembled above only.
                        var info = new CellInfo();
                        j--;
                        pNew.btreeParseCellPtr(apCell[j], ref info);
                        pCell = pTemp;
                        sz    = 4 + ConvertEx.PutVarint9L(pCell, 4, (ulong)info.nKey);
                        pTemp = null;
                    }
                    else
                    {
                        //------------ pCell -= 4;
                        var _pCell_4 = MallocEx.sqlite3Malloc(pCell.Length + 4);
                        Buffer.BlockCopy(pCell, 0, _pCell_4, 4, pCell.Length);
                        pCell = _pCell_4;
                        // Obscure case for non-leaf-data trees: If the cell at pCell was previously stored on a leaf node, and its reported size was 4
                        // bytes, then it may actually be smaller than this (see btreeParseCellPtr(), 4 bytes is the minimum size of
                        // any cell). But it is important to pass the correct size to insertCell(), so reparse the cell now.
                        // Note that this can never happen in an SQLite data file, as all cells are at least 4 bytes. It only happens in b-trees used
                        // to evaluate "IN (SELECT ...)" and similar clauses.
                        if (szCell[j] == 4)
                        {
                            Debug.Assert(leafCorrection == 4);
                            sz = pParent.cellSizePtr(pCell);
                        }
                    }
                    iOvflSpace += sz;
                    Debug.Assert(sz <= pBt.MaxLocal + 23);
                    Debug.Assert(iOvflSpace <= (int)pBt.PageSize);
                    pParent.insertCell(nxDiv, pCell, sz, pTemp, pNew.ID, ref rc);
                    if (rc != RC.OK)
                    {
                        goto balance_cleanup;
                    }
                    Debug.Assert(Pager.IsPageWriteable(pParent.DbPage));
                    j++;
                    nxDiv++;
                }
            }
            Debug.Assert(j == nCell);
            Debug.Assert(nOld > 0);
            Debug.Assert(nNew > 0);
            if ((pageFlags & Btree.PTF_LEAF) == 0)
            {
                Buffer.BlockCopy(apCopy[nOld - 1].Data, 8, apNew[nNew - 1].Data, 8, 4);
            }
            if (isRoot != 0 && pParent.Cells == 0 && pParent.HeaderOffset <= apNew[0].FreeBytes)
            {
                // The root page of the b-tree now contains no cells. The only sibling page is the right-child of the parent. Copy the contents of the
                // child page into the parent, decreasing the overall height of the b-tree structure by one. This is described as the "balance-shallower"
                // sub-algorithm in some documentation.
                // If this is an auto-vacuum database, the call to copyNodeContent() sets all pointer-map entries corresponding to database image pages
                // for which the pointer is stored within the content being copied.
                // The second Debug.Assert below verifies that the child page is defragmented (it must be, as it was just reconstructed using assemblePage()). This
                // is important if the parent page happens to be page 1 of the database image.  */
                Debug.Assert(nNew == 1);
                Debug.Assert(apNew[0].FreeBytes == (ConvertEx.Get2(apNew[0].Data, 5) - apNew[0].CellOffset - apNew[0].Cells * 2));
                copyNodeContent(apNew[0], pParent, ref rc);
                apNew[0].freePage(ref rc);
            }
            else
#if !SQLITE_OMIT_AUTOVACUUM
            if (pBt.AutoVacuum)
#else
            if (false)
#endif
            {
                // Fix the pointer-map entries for all the cells that were shifted around. There are several different types of pointer-map entries that need to
                // be dealt with by this routine. Some of these have been set already, but many have not. The following is a summary:
                //   1) The entries associated with new sibling pages that were not siblings when this function was called. These have already
                //      been set. We don't need to worry about old siblings that were moved to the free-list - the freePage() code has taken care
                //      of those.
                //   2) The pointer-map entries associated with the first overflow page in any overflow chains used by new divider cells. These
                //      have also already been taken care of by the insertCell() code.
                //   3) If the sibling pages are not leaves, then the child pages of cells stored on the sibling pages may need to be updated.
                //   4) If the sibling pages are not internal intkey nodes, then any overflow pages used by these cells may need to be updated
                //      (internal intkey nodes never contain pointers to overflow pages).
                //   5) If the sibling pages are not leaves, then the pointer-map entries for the right-child pages of each sibling may need
                //      to be updated.
                // Cases 1 and 2 are dealt with above by other code. The next block deals with cases 3 and 4 and the one after that, case 5. Since
                // setting a pointer map entry is a relatively expensive operation, this code only sets pointer map entries for child or overflow pages that have
                // actually moved between pages.
                var pNew      = apNew[0];
                var pOld      = apCopy[0];
                var nOverflow = pOld.NOverflows;
                var iNextOld  = pOld.Cells + nOverflow;
                var iOverflow = (nOverflow != 0 ? pOld.Overflows[0].Index : -1);
                j = 0;     // Current 'old' sibling page
                k = 0;     // Current 'new' sibling page
                for (i = 0; i < nCell; i++)
                {
                    var isDivider = 0;
                    while (i == iNextOld)
                    {
                        // Cell i is the cell immediately following the last cell on old sibling page j. If the siblings are not leaf pages of an
                        // intkey b-tree, then cell i was a divider cell.
                        pOld     = apCopy[++j];
                        iNextOld = i + (0 == leafData ? 1 : 0) + pOld.Cells + pOld.NOverflows;
                        if (pOld.NOverflows != 0)
                        {
                            nOverflow = pOld.NOverflows;
                            iOverflow = i + (0 == leafData ? 1 : 0) + pOld.Overflows[0].Index;
                        }
                        isDivider = 0 == leafData ? 1 : 0;
                    }
                    Debug.Assert(nOverflow > 0 || iOverflow < i);
                    Debug.Assert(nOverflow < 2 || pOld.Overflows[0].Index == pOld.Overflows[1].Index - 1);
                    Debug.Assert(nOverflow < 3 || pOld.Overflows[1].Index == pOld.Overflows[2].Index - 1);
                    if (i == iOverflow)
                    {
                        isDivider = 1;
                        if (--nOverflow > 0)
                        {
                            iOverflow++;
                        }
                    }
                    if (i == cntNew[k])
                    {
                        // Cell i is the cell immediately following the last cell on new sibling page k. If the siblings are not leaf pages of an
                        // intkey b-tree, then cell i is a divider cell.
                        pNew = apNew[++k];
                        if (leafData == 0)
                        {
                            continue;
                        }
                    }
                    Debug.Assert(j < nOld);
                    Debug.Assert(k < nNew);
                    // If the cell was originally divider cell (and is not now) or an overflow cell, or if the cell was located on a different sibling
                    // page before the balancing, then the pointer map entries associated with any child or overflow pages need to be updated.
                    if (isDivider != 0 || pOld.ID != pNew.ID)
                    {
                        if (leafCorrection == 0)
                        {
                            pBt.ptrmapPut(ConvertEx.Get4(apCell[i]), PTRMAP.BTREE, pNew.ID, ref rc);
                        }
                        if (szCell[i] > pNew.MinLocal)
                        {
                            pNew.ptrmapPutOvflPtr(apCell[i], ref rc);
                        }
                    }
                }
                if (leafCorrection == 0)
                {
                    for (i = 0; i < nNew; i++)
                    {
                        var key = ConvertEx.Get4(apNew[i].Data, 8);
                        pBt.ptrmapPut(key, PTRMAP.BTREE, apNew[i].ID, ref rc);
                    }
                }
#if false
// The ptrmapCheckPages() contains Debug.Assert() statements that verify that all pointer map pages are set correctly. This is helpful while
// debugging. This is usually disabled because a corrupt database may cause an Debug.Assert() statement to fail.
                ptrmapCheckPages(apNew, nNew);
                ptrmapCheckPages(pParent, 1);
#endif
            }
            Debug.Assert(pParent.HasInit);
            Btree.TRACE("BALANCE: finished: old=%d new=%d cells=%d\n", nOld, nNew, nCell);
            // Cleanup before returning.
balance_cleanup:
            MallocEx.sqlite3ScratchFree(apCell);
            for (i = 0; i < nOld; i++)
            {
                apOld[i].releasePage();
            }
            for (i = 0; i < nNew; i++)
            {
                apNew[i].releasePage();
            }
            return(rc);
        }
コード例 #4
0
ファイル: BtShared+Alloc.cs プロジェクト: smorey2/feaserver
        internal RC freePage2(MemPage pMemPage, Pgno iPage)
        {
            MemPage pTrunk = null;       // Free-list trunk page
            var     pPage1 = this.Page1; // Local reference to page 1

            Debug.Assert(MutexEx.Held(this.Mutex));
            Debug.Assert(iPage > 1);
            Debug.Assert(pMemPage == null || pMemPage.ID == iPage);
            MemPage pPage; // Page being freed. May be NULL.

            if (pMemPage != null)
            {
                pPage = pMemPage;
                Pager.AddPageRef(pPage.DbPage);
            }
            else
            {
                pPage = btreePageLookup(iPage);
            }
            // Increment the free page count on pPage1
            var rc = Pager.Write(pPage1.DbPage);

            if (rc != RC.OK)
            {
                goto freepage_out;
            }
            var nFree = (int)ConvertEx.Get4(pPage1.Data, 36); // Initial number of pages on free-list

            ConvertEx.Put4(pPage1.Data, 36, nFree + 1);
            if (this.SecureDelete)
            {
                // If the secure_delete option is enabled, then always fully overwrite deleted information with zeros.
                if ((pPage == null && ((rc = btreeGetPage(iPage, ref pPage, 0)) != RC.OK)) || ((rc = Pager.Write(pPage.DbPage)) != RC.OK))
                {
                    goto freepage_out;
                }
                Array.Clear(pPage.Data, 0, (int)pPage.Shared.PageSize);
            }
            // If the database supports auto-vacuum, write an entry in the pointer-map to indicate that the page is free.
#if !SQLITE_OMIT_AUTOVACUUM
            if (this.AutoVacuum)
#else
            if (false)
#endif
            {
                ptrmapPut(iPage, PTRMAP.FREEPAGE, 0, ref rc);
                if (rc != RC.OK)
                {
                    goto freepage_out;
                }
            }
            // Now manipulate the actual database free-list structure. There are two possibilities. If the free-list is currently empty, or if the first
            // trunk page in the free-list is full, then this page will become a new free-list trunk page. Otherwise, it will become a leaf of the
            // first trunk page in the current free-list. This block tests if it is possible to add the page as a new free-list leaf.
            Pgno iTrunk = 0; // Page number of free-list trunk page
            if (nFree != 0)
            {
                uint nLeaf;                                     // Initial number of leaf cells on trunk page
                iTrunk = (Pgno)ConvertEx.Get4(pPage1.Data, 32); // Page number of free-list trunk page
                rc     = btreeGetPage(iTrunk, ref pTrunk, 0);
                if (rc != RC.OK)
                {
                    goto freepage_out;
                }
                nLeaf = ConvertEx.Get4(pTrunk.Data, 4);
                Debug.Assert(this.UsableSize > 32);
                if (nLeaf > (uint)this.UsableSize / 4 - 2)
                {
                    rc = SysEx.SQLITE_CORRUPT_BKPT();
                    goto freepage_out;
                }
                if (nLeaf < (uint)this.UsableSize / 4 - 8)
                {
                    // In this case there is room on the trunk page to insert the page being freed as a new leaf.
                    // Note: that the trunk page is not really full until it contains usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
                    // coded.  But due to a coding error in versions of SQLite prior to 3.6.0, databases with freelist trunk pages holding more than
                    // usableSize/4 - 8 entries will be reported as corrupt.  In order to maintain backwards compatibility with older versions of SQLite,
                    // we will continue to restrict the number of entries to usableSize/4 - 8 for now.  At some point in the future (once everyone has upgraded
                    // to 3.6.0 or later) we should consider fixing the conditional above to read "usableSize/4-2" instead of "usableSize/4-8".
                    rc = Pager.Write(pTrunk.DbPage);
                    if (rc == RC.OK)
                    {
                        ConvertEx.Put4(pTrunk.Data, 4, nLeaf + 1);
                        ConvertEx.Put4(pTrunk.Data, (uint)(8 + nLeaf * 4), iPage);
                        if (pPage != null && !this.SecureDelete)
                        {
                            Pager.DontWrite(pPage.DbPage);
                        }
                        rc = btreeSetHasContent(iPage);
                    }
                    Btree.TRACE("FREE-PAGE: %d leaf on trunk page %d\n", iPage, pTrunk.ID);
                    goto freepage_out;
                }
            }
            // If control flows to this point, then it was not possible to add the the page being freed as a leaf page of the first trunk in the free-list.
            // Possibly because the free-list is empty, or possibly because the first trunk in the free-list is full. Either way, the page being freed
            // will become the new first trunk page in the free-list.
            if (pPage == null && (rc = btreeGetPage(iPage, ref pPage, 0)) != RC.OK)
            {
                goto freepage_out;
            }
            rc = Pager.Write(pPage.DbPage);
            if (rc != RC.OK)
            {
                goto freepage_out;
            }
            ConvertEx.Put4L(pPage.Data, iTrunk);
            ConvertEx.Put4(pPage.Data, 4, 0);
            ConvertEx.Put4(pPage1.Data, 32, iPage);
            Btree.TRACE("FREE-PAGE: %d new trunk page replacing %d\n", pPage.ID, iTrunk);
freepage_out:
            if (pPage != null)
            {
                pPage.HasInit = false;
            }
            pPage.releasePage();
            pTrunk.releasePage();
            return(rc);
        }
コード例 #5
0
ファイル: BtShared+Alloc.cs プロジェクト: smorey2/feaserver
        internal RC allocateBtreePage(ref MemPage ppPage, ref Pgno pPgno, Pgno nearby, byte exact)
        {
            MemPage pTrunk     = null;
            MemPage pPrevTrunk = null;

            Debug.Assert(MutexEx.Held(this.Mutex));
            var pPage1 = this.Page1;
            var mxPage = btreePagecount();                // Total size of the database file
            var n      = ConvertEx.Get4(pPage1.Data, 36); // Number of pages on the freelist

            if (n >= mxPage)
            {
                return(SysEx.SQLITE_CORRUPT_BKPT());
            }
            RC rc;

            if (n > 0)
            {
                // There are pages on the freelist.  Reuse one of those pages.
                Pgno iTrunk;
                byte searchList = 0; // If the free-list must be searched for 'nearby'
                // If the 'exact' parameter was true and a query of the pointer-map shows that the page 'nearby' is somewhere on the free-list, then the entire-list will be searched for that page.
#if !SQLITE_OMIT_AUTOVACUUM
                if (exact != 0 && nearby <= mxPage)
                {
                    Debug.Assert(nearby > 0);
                    Debug.Assert(this.AutoVacuum);
                    PTRMAP eType  = 0;
                    uint   dummy0 = 0;
                    rc = ptrmapGet(nearby, ref eType, ref dummy0);
                    if (rc != RC.OK)
                    {
                        return(rc);
                    }
                    if (eType == PTRMAP.FREEPAGE)
                    {
                        searchList = 1;
                    }
                    pPgno = nearby;
                }
#endif
                // Decrement the free-list count by 1. Set iTrunk to the index of the first free-list trunk page. iPrevTrunk is initially 1.
                rc = Pager.Write(pPage1.DbPage);
                if (rc != RC.OK)
                {
                    return(rc);
                }
                ConvertEx.Put4(pPage1.Data, 36, n - 1);
                // The code within this loop is run only once if the 'searchList' variable is not true. Otherwise, it runs once for each trunk-page on the
                // free-list until the page 'nearby' is located.
                do
                {
                    pPrevTrunk = pTrunk;
                    iTrunk     = (pPrevTrunk != null ? ConvertEx.Get4(pPrevTrunk.Data, 0) : ConvertEx.Get4(pPage1.Data, 32));
                    rc         = (iTrunk > mxPage ? SysEx.SQLITE_CORRUPT_BKPT() : btreeGetPage(iTrunk, ref pTrunk, 0));
                    if (rc != RC.OK)
                    {
                        pTrunk = null;
                        goto end_allocate_page;
                    }
                    var k = ConvertEx.Get4(pTrunk.Data, 4); // # of leaves on this trunk page
                    if (k == 0 && searchList == 0)
                    {
                        // The trunk has no leaves and the list is not being searched. So extract the trunk page itself and use it as the newly allocated page
                        Debug.Assert(pPrevTrunk == null);
                        rc = Pager.Write(pTrunk.DbPage);
                        if (rc != RC.OK)
                        {
                            goto end_allocate_page;
                        }
                        pPgno = iTrunk;
                        Buffer.BlockCopy(pTrunk.Data, 0, pPage1.Data, 32, 4);
                        ppPage = pTrunk;
                        pTrunk = null;
                        Btree.TRACE("ALLOCATE: %d trunk - %d free pages left\n", pPgno, n - 1);
                    }
                    else if (k > (uint)(this.UsableSize / 4 - 2))
                    {
                        // Value of k is out of range. Database corruption
                        rc = SysEx.SQLITE_CORRUPT_BKPT();
                        goto end_allocate_page;
#if !SQLITE_OMIT_AUTOVACUUM
                    }
                    else if (searchList != 0 && nearby == iTrunk)
                    {
                        // The list is being searched and this trunk page is the page to allocate, regardless of whether it has leaves.
                        Debug.Assert(pPgno == iTrunk);
                        ppPage     = pTrunk;
                        searchList = 0;
                        rc         = Pager.Write(pTrunk.DbPage);
                        if (rc != RC.OK)
                        {
                            goto end_allocate_page;
                        }
                        if (k == 0)
                        {
                            if (pPrevTrunk == null)
                            {
                                pPage1.Data[32 + 0] = pTrunk.Data[0 + 0];
                                pPage1.Data[32 + 1] = pTrunk.Data[0 + 1];
                                pPage1.Data[32 + 2] = pTrunk.Data[0 + 2];
                                pPage1.Data[32 + 3] = pTrunk.Data[0 + 3];
                            }
                            else
                            {
                                rc = Pager.Write(pPrevTrunk.DbPage);
                                if (rc != RC.OK)
                                {
                                    goto end_allocate_page;
                                }
                                pPrevTrunk.Data[0 + 0] = pTrunk.Data[0 + 0];
                                pPrevTrunk.Data[0 + 1] = pTrunk.Data[0 + 1];
                                pPrevTrunk.Data[0 + 2] = pTrunk.Data[0 + 2];
                                pPrevTrunk.Data[0 + 3] = pTrunk.Data[0 + 3];
                            }
                        }
                        else
                        {
                            // The trunk page is required by the caller but it contains pointers to free-list leaves. The first leaf becomes a trunk page in this case.
                            var pNewTrunk = new MemPage();
                            var iNewTrunk = (Pgno)ConvertEx.Get4(pTrunk.Data, 8);
                            if (iNewTrunk > mxPage)
                            {
                                rc = SysEx.SQLITE_CORRUPT_BKPT();
                                goto end_allocate_page;
                            }
                            rc = btreeGetPage(iNewTrunk, ref pNewTrunk, 0);
                            if (rc != RC.OK)
                            {
                                goto end_allocate_page;
                            }
                            rc = Pager.Write(pNewTrunk.DbPage);
                            if (rc != RC.OK)
                            {
                                pNewTrunk.releasePage();
                                goto end_allocate_page;
                            }
                            pNewTrunk.Data[0 + 0] = pTrunk.Data[0 + 0];
                            pNewTrunk.Data[0 + 1] = pTrunk.Data[0 + 1];
                            pNewTrunk.Data[0 + 2] = pTrunk.Data[0 + 2];
                            pNewTrunk.Data[0 + 3] = pTrunk.Data[0 + 3];
                            ConvertEx.Put4(pNewTrunk.Data, 4, (uint)(k - 1));
                            Buffer.BlockCopy(pTrunk.Data, 12, pNewTrunk.Data, 8, (int)(k - 1) * 4);
                            pNewTrunk.releasePage();
                            if (pPrevTrunk == null)
                            {
                                Debug.Assert(Pager.IsPageWriteable(pPage1.DbPage));
                                ConvertEx.Put4(pPage1.Data, 32, iNewTrunk);
                            }
                            else
                            {
                                rc = Pager.Write(pPrevTrunk.DbPage);
                                if (rc != RC.OK)
                                {
                                    goto end_allocate_page;
                                }
                                ConvertEx.Put4(pPrevTrunk.Data, 0, iNewTrunk);
                            }
                        }
                        pTrunk = null;
                        Btree.TRACE("ALLOCATE: %d trunk - %d free pages left\n", pPgno, n - 1);
#endif
                    }
                    else if (k > 0)
                    {
                        // Extract a leaf from the trunk
                        uint closest;
                        var  aData = pTrunk.Data;
                        if (nearby > 0)
                        {
                            closest = 0;
                            var dist = Math.Abs((int)(ConvertEx.Get4(aData, 8) - nearby));
                            for (uint i = 1; i < k; i++)
                            {
                                int dist2 = Math.Abs((int)(ConvertEx.Get4(aData, 8 + i * 4) - nearby));
                                if (dist2 < dist)
                                {
                                    closest = i;
                                    dist    = dist2;
                                }
                            }
                        }
                        else
                        {
                            closest = 0;
                        }
                        //
                        var iPage = (Pgno)ConvertEx.Get4(aData, 8 + closest * 4);
                        if (iPage > mxPage)
                        {
                            rc = SysEx.SQLITE_CORRUPT_BKPT();
                            goto end_allocate_page;
                        }
                        if (searchList == 0 || iPage == nearby)
                        {
                            pPgno = iPage;
                            Btree.TRACE("ALLOCATE: %d was leaf %d of %d on trunk %d" + ": %d more free pages\n", pPgno, closest + 1, k, pTrunk.ID, n - 1);
                            rc = Pager.Write(pTrunk.DbPage);
                            if (rc != RC.OK)
                            {
                                goto end_allocate_page;
                            }
                            if (closest < k - 1)
                            {
                                Buffer.BlockCopy(aData, (int)(4 + k * 4), aData, 8 + (int)closest * 4, 4);
                            }
                            ConvertEx.Put4(aData, 4, (k - 1));
                            var noContent = (!btreeGetHasContent(pPgno) ? 1 : 0);
                            rc = btreeGetPage(pPgno, ref ppPage, noContent);
                            if (rc == RC.OK)
                            {
                                rc = Pager.Write((ppPage).DbPage);
                                if (rc != RC.OK)
                                {
                                    ppPage.releasePage();
                                }
                            }
                            searchList = 0;
                        }
                    }
                    pPrevTrunk.releasePage();
                    pPrevTrunk = null;
                } while (searchList != 0);
            }
            else
            {
                // There are no pages on the freelist, so create a new page at the end of the file
                rc = Pager.Write(this.Page1.DbPage);
                if (rc != RC.OK)
                {
                    return(rc);
                }
                this.Pages++;
                if (this.Pages == MemPage.PENDING_BYTE_PAGE(this))
                {
                    this.Pages++;
                }
#if !SQLITE_OMIT_AUTOVACUUM
                if (this.AutoVacuum && MemPage.PTRMAP_ISPAGE(this, this.Pages))
                {
                    // If pPgno refers to a pointer-map page, allocate two new pages at the end of the file instead of one. The first allocated page
                    // becomes a new pointer-map page, the second is used by the caller.
                    MemPage pPg = null;
                    Btree.TRACE("ALLOCATE: %d from end of file (pointer-map page)\n", pPgno);
                    Debug.Assert(this.Pages != MemPage.PENDING_BYTE_PAGE(this));
                    rc = btreeGetPage(this.Pages, ref pPg, 1);
                    if (rc == RC.OK)
                    {
                        rc = Pager.Write(pPg.DbPage);
                        pPg.releasePage();
                    }
                    if (rc != RC.OK)
                    {
                        return(rc);
                    }
                    this.Pages++;
                    if (this.Pages == MemPage.PENDING_BYTE_PAGE(this))
                    {
                        this.Pages++;
                    }
                }
#endif
                ConvertEx.Put4(this.Page1.Data, 28, this.Pages);
                pPgno = this.Pages;
                Debug.Assert(pPgno != MemPage.PENDING_BYTE_PAGE(this));
                rc = btreeGetPage(pPgno, ref ppPage, 1);
                if (rc != RC.OK)
                {
                    return(rc);
                }
                rc = Pager.Write((ppPage).DbPage);
                if (rc != RC.OK)
                {
                    ppPage.releasePage();
                }
                Btree.TRACE("ALLOCATE: %d from end of file\n", pPgno);
            }
            Debug.Assert(pPgno != MemPage.PENDING_BYTE_PAGE(this));

end_allocate_page:
            pTrunk.releasePage();
            pPrevTrunk.releasePage();
            if (rc == RC.OK)
            {
                if (Pager.GetPageRefCount((ppPage).DbPage) > 1)
                {
                    ppPage.releasePage();
                    return(SysEx.SQLITE_CORRUPT_BKPT());
                }
                (ppPage).HasInit = false;
            }
            else
            {
                ppPage = null;
            }
            Debug.Assert(rc != RC.OK || Pager.IsPageWriteable((ppPage).DbPage));
            return(rc);
        }
コード例 #6
0
        internal static RC relocatePage(BtShared pBt, MemPage pDbPage, PTRMAP eType, Pgno iPtrPage, Pgno iFreePage, int isCommit)
        {
            var pPtrPage = new MemPage();   // The page that contains a pointer to pDbPage
            var iDbPage  = pDbPage.ID;
            var pPager   = pBt.Pager;

            Debug.Assert(eType == PTRMAP.OVERFLOW2 || eType == PTRMAP.OVERFLOW1 || eType == PTRMAP.BTREE || eType == PTRMAP.ROOTPAGE);
            Debug.Assert(MutexEx.Held(pBt.Mutex));
            Debug.Assert(pDbPage.Shared == pBt);
            // Move page iDbPage from its current location to page number iFreePage
            Btree.TRACE("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", iDbPage, iFreePage, iPtrPage, eType);
            var rc = pPager.sqlite3PagerMovepage(pDbPage.DbPage, iFreePage, isCommit);

            if (rc != RC.OK)
            {
                return(rc);
            }
            pDbPage.ID = iFreePage;
            // If pDbPage was a btree-page, then it may have child pages and/or cells that point to overflow pages. The pointer map entries for all these
            // pages need to be changed.
            // If pDbPage is an overflow page, then the first 4 bytes may store a pointer to a subsequent overflow page. If this is the case, then
            // the pointer map needs to be updated for the subsequent overflow page.
            if (eType == PTRMAP.BTREE || eType == PTRMAP.ROOTPAGE)
            {
                rc = pDbPage.setChildPtrmaps();
                if (rc != RC.OK)
                {
                    return(rc);
                }
            }
            else
            {
                var nextOvfl = (Pgno)ConvertEx.Get4(pDbPage.Data);
                if (nextOvfl != 0)
                {
                    pBt.ptrmapPut(nextOvfl, PTRMAP.OVERFLOW2, iFreePage, ref rc);
                    if (rc != RC.OK)
                    {
                        return(rc);
                    }
                }
            }
            // Fix the database pointer on page iPtrPage that pointed at iDbPage so that it points at iFreePage. Also fix the pointer map entry for iPtrPage.
            if (eType != PTRMAP.ROOTPAGE)
            {
                rc = pBt.btreeGetPage(iPtrPage, ref pPtrPage, 0);
                if (rc != RC.OK)
                {
                    return(rc);
                }
                rc = Pager.Write(pPtrPage.DbPage);
                if (rc != RC.OK)
                {
                    pPtrPage.releasePage();
                    return(rc);
                }
                rc = pPtrPage.modifyPagePointer(iDbPage, iFreePage, eType);
                pPtrPage.releasePage();
                if (rc == RC.OK)
                {
                    pBt.ptrmapPut(iFreePage, eType, iPtrPage, ref rc);
                }
            }
            return(rc);
        }
コード例 #7
0
        // was:sqlite3BtreeInsert
        public RC Insert(byte[] key, long nKey, byte[] data, int nData, int nZero, bool appendBiasRight, int seekResult)
        {
            var loc   = seekResult; // -1: before desired location  +1: after
            var szNew = 0;
            int idx;
            var p   = this.Tree;
            var pBt = p.Shared;
            int oldCell;

            byte[] newCell = null;
            if (this.State == CursorState.FAULT)
            {
                Debug.Assert(this.SkipNext != 0);
                return((RC)this.SkipNext);
            }
            Debug.Assert(HoldsMutex());
            Debug.Assert(this.Writeable && pBt.InTransaction == TRANS.WRITE && !pBt.ReadOnly);
            Debug.Assert(p.hasSharedCacheTableLock(this.RootID, (this.KeyInfo != null), LOCK.WRITE));
            // Assert that the caller has been consistent. If this cursor was opened expecting an index b-tree, then the caller should be inserting blob
            // keys with no associated data. If the cursor was opened expecting an intkey table, the caller should be inserting integer keys with a
            // blob of associated data.
            Debug.Assert((key == null) == (this.KeyInfo == null));
            // If this is an insert into a table b-tree, invalidate any incrblob cursors open on the row being replaced (assuming this is a replace
            // operation - if it is not, the following is a no-op).  */
            if (this.KeyInfo == null)
            {
                Btree.invalidateIncrblobCursors(p, nKey, false);
            }
            // Save the positions of any other cursors open on this table.
            // In some cases, the call to btreeMoveto() below is a no-op. For example, when inserting data into a table with auto-generated integer
            // keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the integer key to use. It then calls this function to actually insert the
            // data into the intkey B-Tree. In this case btreeMoveto() recognizes that the cursor is already where it needs to be and returns without
            // doing any work. To avoid thwarting these optimizations, it is important not to clear the cursor here.
            var rc = pBt.saveAllCursors(this.RootID, this);

            if (rc != RC.OK)
            {
                return(rc);
            }
            if (loc == 0)
            {
                rc = BtreeMoveTo(key, nKey, appendBiasRight, ref loc);
                if (rc != RC.OK)
                {
                    return(rc);
                }
            }
            Debug.Assert(this.State == CursorState.VALID || (this.State == CursorState.INVALID && loc != 0));
            var pPage = this.Pages[this.PageID];

            Debug.Assert(pPage.HasIntKey || nKey >= 0);
            Debug.Assert(pPage.Leaf != 0 || !pPage.HasIntKey);
            Btree.TRACE("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", this.RootID, nKey, nData, pPage.ID, (loc == 0 ? "overwrite" : "new entry"));
            Debug.Assert(pPage.HasInit);
            pBt.allocateTempSpace();
            newCell = pBt.pTmpSpace;
            rc      = pPage.fillInCell(newCell, key, nKey, data, nData, nZero, ref szNew);
            if (rc != RC.OK)
            {
                goto end_insert;
            }
            Debug.Assert(szNew == pPage.cellSizePtr(newCell));
            Debug.Assert(szNew <= Btree.MX_CELL_SIZE(pBt));
            idx = this.PagesIndexs[this.PageID];
            if (loc == 0)
            {
                ushort szOld;
                Debug.Assert(idx < pPage.Cells);
                rc = Pager.Write(pPage.DbPage);
                if (rc != RC.OK)
                {
                    goto end_insert;
                }
                oldCell = pPage.FindCell(idx);
                if (0 == pPage.Leaf)
                {
                    newCell[0] = pPage.Data[oldCell + 0];
                    newCell[1] = pPage.Data[oldCell + 1];
                    newCell[2] = pPage.Data[oldCell + 2];
                    newCell[3] = pPage.Data[oldCell + 3];
                }
                szOld = pPage.cellSizePtr(oldCell);
                rc    = pPage.clearCell(oldCell);
                pPage.dropCell(idx, szOld, ref rc);
                if (rc != RC.OK)
                {
                    goto end_insert;
                }
            }
            else if (loc < 0 && pPage.Cells > 0)
            {
                Debug.Assert(pPage.Leaf != 0);
                idx = ++this.PagesIndexs[this.PageID];
            }
            else
            {
                Debug.Assert(pPage.Leaf != 0);
            }
            pPage.insertCell(idx, newCell, szNew, null, 0, ref rc);
            Debug.Assert(rc != RC.OK || pPage.Cells > 0 || pPage.NOverflows > 0);
            // If no error has occured and pPage has an overflow cell, call balance() to redistribute the cells within the tree. Since balance() may move
            // the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey variables.
            // Previous versions of SQLite called moveToRoot() to move the cursor back to the root page as balance() used to invalidate the contents
            // of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, set the cursor state to "invalid". This makes common insert operations
            // slightly faster.
            // There is a subtle but important optimization here too. When inserting multiple records into an intkey b-tree using a single cursor (as can
            // happen while processing an "INSERT INTO ... SELECT" statement), it is advantageous to leave the cursor pointing to the last entry in
            // the b-tree if possible. If the cursor is left pointing to the last entry in the table, and the next row inserted has an integer key
            // larger than the largest existing key, it is possible to insert the row without seeking the cursor. This can be a big performance boost.
            this.Info.nSize = 0;
            this.ValidNKey  = false;
            if (rc == RC.OK && pPage.NOverflows != 0)
            {
                rc = Balance();
                // Must make sure nOverflow is reset to zero even if the balance() fails. Internal data structure corruption will result otherwise.
                // Also, set the cursor state to invalid. This stops saveCursorPosition() from trying to save the current position of the cursor.
                this.Pages[this.PageID].NOverflows = 0;
                this.State = CursorState.INVALID;
            }
            Debug.Assert(this.Pages[this.PageID].NOverflows == 0);
end_insert:
            return(rc);
        }