/// <summary> /// Return the confidence interval for proportion of SUCCESS in the population at a given confidence level given the sample proportion point estimate /// </summary> /// <param name="proportion">sample proportion point estimate</param> /// <param name="sampleSize">sample size</param> /// <param name="confidence_level"></param> /// <returns>confidence interval for proportion of SUCCESS in the population at a given confidence level</returns> public static double[] GetConfidenceInterval(double proportion, int sampleSize, double confidence_level, bool useSimulation = false, int simulationCount = 500) { double standard_error = StandardError.GetStandardErrorForProportion(proportion, sampleSize); double p1 = (1 - confidence_level) / 2; double p2 = 1 - p1; int expected_success_count = (int)(proportion * sampleSize); int expected_failure_count = (int)((1 - proportion) * sampleSize); if (expected_failure_count < 10 || expected_success_count < 10 || useSimulation) //if np < 10 or n(1-p) < 10, then CLT for proportion no longer holds and simulation should be used in place of the normal distribution { double[] sampleProportions = new double[simulationCount]; int simulationSampleSize = (int)System.Math.Max(10 / proportion, 10 / (1 - proportion)) * 2; for (int i = 0; i < simulationCount; ++i) { int successCount = 0; for (int j = 0; j < simulationSampleSize; ++j) { if (DistributionModel.GetUniform() <= proportion) { successCount++; } } sampleProportions[i] = (double)successCount / simulationSampleSize; } double proportion_mu = Mean.GetMean(sampleProportions); double proportion_sigma = StdDev.GetStdDev(sampleProportions, proportion_mu); return(new double[] { proportion_mu + Gaussian.GetPercentile(p1) * proportion_sigma, proportion_mu + Gaussian.GetQuantile(p2) * proportion_sigma }); } else { double critical_value1 = Gaussian.GetQuantile(p1); double critical_value2 = Gaussian.GetQuantile(p2); double[] confidence_interval = new double[2]; confidence_interval[0] = proportion + critical_value1 * standard_error; confidence_interval[1] = proportion + critical_value2 * standard_error; return(confidence_interval); } }
/// <summary> /// Estimate the normal distribution of a sample proportion (for a categorical variable with two values { "SUCCESS", "FAILURE" }) /// /// The Centrl Limit Theorem (CLT) for proportions: /// The distribution of sample proportions is nearly normal, centered at the population proportion, and with a standard error inversely proportional to the sample size. /// /// Conditions for the CLT for proportions: /// 1. Independence: Sampled observations must be independent. /// > random sample/assignment /// > if sampling without replacement, n < 10% population /// 2. Sample size / skew: There should be at least 10 successes and 10 failures in the sample: np >= 10 and n(1-p) >= 10 /// </summary> /// <param name="p"></param> /// <param name="sampleSize"></param> /// <returns></returns> public static Gaussian EstimateSampleProportionDistribution(double p, int sampleSize) { double SE = StandardError.GetStandardErrorForProportion(p, sampleSize); return(new Gaussian(p, SE)); }
/// <summary> /// Calculate the confidence interval for the proportion of SUCCESS in the population at a given confidence interval, given the point estimate proprotions are known from multiple groups /// /// Note that this is only for categorical variable with two levels : SUCCESS, FAILURE /// </summary> /// <param name="proportions">The point estimate proportion of SUCESS obtained from multiple groups</param> /// <param name="sampleSizes">The sample size of each group</param> /// <param name="confidence_level">The given confidence interval</param> /// <returns>The confidence interval for the proportion of SUCCESS in the population at the given confidence level</returns> public static double[] GetConfidenceInterval(double[] proportions, int[] sampleSizes, double confidence_level, bool useSimulation = false, int simulationCount = 500) { double p1 = (1 - confidence_level) / 2; double p2 = 1 - p1; bool shouldUseSimulation = useSimulation; if (!shouldUseSimulation) { for (int i = 0; i < sampleSizes.Length; ++i) { int n_i = sampleSizes[i]; int expected_success_count = (int)(proportions[i] * n_i); int expected_failure_count = (int)((1 - proportions[i]) * n_i); if (expected_failure_count < 10 || expected_success_count < 10) { shouldUseSimulation = true; break; } } } if (shouldUseSimulation) { double sucess_count = 0; double total_count = 0; for (int i = 0; i < sampleSizes.Length; ++i) { int n_i = sampleSizes[i]; sucess_count += proportions[i] * n_i; total_count += n_i; } double p_hat = sucess_count / total_count; double[] sampleProportions = new double[simulationCount]; int simulationSampleSize = (int)System.Math.Max(10 / p_hat, 10 / (1 - p_hat)) * 2; for (int i = 0; i < simulationCount; ++i) { int successCount = 0; for (int j = 0; j < simulationSampleSize; ++j) { if (DistributionModel.GetUniform() <= p_hat) { successCount++; } } sampleProportions[i] = (double)successCount / simulationSampleSize; } double proportion_mu = Mean.GetMean(sampleProportions); double proportion_sigma = StdDev.GetStdDev(sampleProportions, proportion_mu); return(new double[] { proportion_mu + Gaussian.GetPercentile(p1) * proportion_sigma, proportion_mu + Gaussian.GetQuantile(p2) * proportion_sigma }); } else { double[] standardErrors = new double[proportions.Length]; for (int i = 0; i < proportions.Length; ++i) { standardErrors[i] = StandardError.GetStandardErrorForProportion(proportions[i], sampleSizes[i]); } double standardError = StandardError.GetStandardErrorForWeightAverages(sampleSizes, standardErrors); double sampleMean = Mean.GetMeanForWeightedAverage(proportions, sampleSizes); double critical_value1 = 0; double critical_value2 = 0; critical_value1 = Gaussian.GetQuantile(p1); critical_value2 = Gaussian.GetQuantile(p2); double[] confidence_interval = new double[2]; confidence_interval[0] = sampleMean + critical_value1 * standardError; confidence_interval[1] = sampleMean + critical_value2 * standardError; return(confidence_interval); } }