public static bool ContainsDocs(Cluster cl) { bool pass = false; for (int i = 0; i < cl.Data.Count; i++) { if (cl.Data[i].Data is TextTitle) { pass = true; break; } } return pass; }
//Добавляет кластер к ближайшему кластеру public void AddToClosestCluster(Cluster cl) { int index = 0; double mindist = Double.MaxValue; for (int i = 0; i < C.Count; i++) { if (C[i] != cl) { if (Vertex.EuclideDistance(cl.ClusterCenter, C[i].ClusterCenter) < mindist) { mindist = Vertex.EuclideDistance(cl.ClusterCenter, C[i].ClusterCenter); index = i; } } } for (int i = 0; i < cl.Data.Count; i++) { C[index].Data.Add(cl.Data[i]); } C.Remove(cl); }
public Clusters(double[,] A, Tags[] texts, Tags[] words) { r = 1; V = new List<Vertex>(); textTitles = texts; C = new List<Cluster>(); Texts = new Cluster(); double[] W = new double[A.GetLength(0)]; double[,] U = new double[A.GetLength(0), A.GetLength(1)]; double[,] VT = new double[A.GetLength(1), A.GetLength(1)]; alglib.rmatrixsvd(A, A.GetLength(0), A.GetLength(1), 1, 1, 0, out W, out U, out VT); #region /************************************************************************* Singular value decomposition of a rectangular matrix. The algorithm calculates the singular value decomposition of a matrix of size MxN: A = U * S * V^T The algorithm finds the singular values and, optionally, matrices U and V^T. The algorithm can find both first min(M,N) columns of matrix U and rows of matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM and NxN respectively). Take into account that the subroutine does not return matrix V but V^T. Input parameters: A - matrix to be decomposed. Array whose indexes range within [0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. UNeeded - 0, 1 or 2. See the description of the parameter U. VTNeeded - 0, 1 or 2. See the description of the parameter VT. AdditionalMemory - If the parameter: * equals 0, the algorithm doesn’t use additional memory (lower requirements, lower performance). * equals 1, the algorithm uses additional memory of size min(M,N)*min(M,N) of real numbers. It often speeds up the algorithm. * equals 2, the algorithm uses additional memory of size M*min(M,N) of real numbers. It allows to get a maximum performance. The recommended value of the parameter is 2. Output parameters: W - contains singular values in descending order. U - if UNeeded=0, U isn't changed, the left singular vectors are not calculated. if Uneeded=1, U contains left singular vectors (first min(M,N) columns of matrix U). Array whose indexes range within [0..M-1, 0..Min(M,N)-1]. if UNeeded=2, U contains matrix U wholly. Array whose indexes range within [0..M-1, 0..M-1]. VT - if VTNeeded=0, VT isn’t changed, the right singular vectors are not calculated. if VTNeeded=1, VT contains right singular vectors (first min(M,N) rows of matrix V^T). Array whose indexes range within [0..min(M,N)-1, 0..N-1]. if VTNeeded=2, VT contains matrix V^T wholly. Array whose indexes range within [0..N-1, 0..N-1]. *************************************************************************/ #endregion //Добавление вершин из матриц for (int i = 0; i < U.GetLength(0); i++) { V.Add(new Vertex(words[i], U[i, 0], U[i, 1], U[i, 2])); } for (int i = 0; i < VT.GetLength(1); i++) { V.Add(new Vertex(texts[i], VT[0, i], VT[1, i], VT[2, i])); } for (int i = 0; i < texts.Length; i++) { for (int j = 0; j < V.Count; j++) { if (texts[i].GetTag == V[j].Data.GetTag) { Texts.Data.Add(V[j]); } } } }
public static double DestinationToCluster(double x, double y, double z, Cluster cl) { return Math.Sqrt(Math.Pow(x - cl.ClusterCenter.x, 2) + Math.Pow(y - cl.ClusterCenter.y, 2) + Math.Pow(z - cl.ClusterCenter.z, 2)); }