コード例 #1
0
        /// <summary>
        /// Symmetric tridiagonal QL algorithm.
        /// This is derived from the Algol procedures tql2 by
        /// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
        /// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
        /// Fortran subroutine in EISPACK.
        /// </summary>
        private void tql2()
        {
            for (int i = 1; i < n; i++)
            {
                e[i - 1] = e[i];
            }
            e[n - 1] = 0.0;

            double f    = 0.0;
            double tst1 = 0.0;
            double eps  = Math.Pow(2.0, -52.0);

            for (int l = 0; l < n; l++)
            {
                // Find small subdiagonal element
                tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
                int m = l;
                while (m < n)
                {
                    if (Math.Abs(e[m]) <= eps * tst1)
                    {
                        break;
                    }
                    m++;
                }

                // If m == l, d[l] is an eigenvalue otherwise, iterate.
                if (m > l)
                {
                    int iter = 0;
                    do
                    {
                        iter = iter + 1;                          // (Could check iteration count here.)

                        // Compute implicit shift
                        double g = d[l];
                        double p = (d[l + 1] - g) / (2.0 * e[l]);
                        double r = Maths.Hypot(p, 1.0);
                        if (p < 0)
                        {
                            r = -r;
                        }
                        d[l]     = e[l] / (p + r);
                        d[l + 1] = e[l] * (p + r);
                        double dl1 = d[l + 1];
                        double h   = g - d[l];
                        for (int i = l + 2; i < n; i++)
                        {
                            d[i] -= h;
                        }
                        f = f + h;

                        // Implicit QL transformation.
                        p = d[m];
                        double c   = 1.0;
                        double c2  = c;
                        double c3  = c;
                        double el1 = e[l + 1];
                        double s   = 0.0;
                        double s2  = 0.0;
                        for (int i = m - 1; i >= l; i--)
                        {
                            c3       = c2;
                            c2       = c;
                            s2       = s;
                            g        = c * e[i];
                            h        = c * p;
                            r        = Maths.Hypot(p, e[i]);
                            e[i + 1] = s * r;
                            s        = e[i] / r;
                            c        = p / r;
                            p        = c * d[i] - s * g;
                            d[i + 1] = h + s * (c * g + s * d[i]);

                            // Accumulate transformation.

                            for (int k = 0; k < n; k++)
                            {
                                h           = V[k, i + 1];
                                V[k, i + 1] = s * V[k, i] + c * h;
                                V[k, i]     = c * V[k, i] - s * h;
                            }
                        }
                        p    = -s * s2 * c3 * el1 * e[l] / dl1;
                        e[l] = s * p;
                        d[l] = c * p;

                        // Check for convergence.
                    }while (Math.Abs(e[l]) > eps * tst1);
                }
                d[l] = d[l] + f;
                e[l] = 0.0;
            }

            // Sort eigenvalues and corresponding vectors.

            for (int i = 0; i < n - 1; i++)
            {
                int    k = i;
                double p = d[i];
                for (int j = i + 1; j < n; j++)
                {
                    if (d[j] < p)
                    {
                        k = j;
                        p = d[j];
                    }
                }
                if (k != i)
                {
                    d[k] = d[i];
                    d[i] = p;
                    for (int j = 0; j < n; j++)
                    {
                        p       = V[j, i];
                        V[j, i] = V[j, k];
                        V[j, k] = p;
                    }
                }
            }
        }
コード例 #2
0
        /// <summary>
        /// Construct the singular value decomposition
        /// Structure to access U, S, and V.
        /// </summary>
        /// <param name="Arg">Rectangular matrix</param>
        public SingularValueDecomposition(Matrix Arg)
        {
            // Derived from LINPACK code.
            // Initialize.
            double[][] A = Arg.getArrayCopy();
            m = Arg.rowDimension;
            n = Arg.colDimension;

            //Apparently the failing cases are only a proper subset of (m<n),
            //o let's not throw error.  Correct fix to come later?
            //if (m<n) { throw new ArgumentException("CSMA SVD only works for m >= n"); }
            int nu = Math.Min(m, n);

            s = new double [Math.Min(m + 1, n)];
            U = new double [m][];
            for (int i = 0; i < m; i++)
            {
                U[i] = new double[nu];
            }

            V = new double [n][];
            for (int i = 0; i < n; i++)
            {
                V[i] = new double[n];
            }

            double[] e     = new double [n];
            double[] work  = new double [m];
            bool     wantu = true;
            bool     wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.

            int nct = Math.Min(m - 1, n);
            int nrt = Math.Max(0, Math.Min(n - 2, m));

            for (int k = 0; k < Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;
                    for (int i = k; i < m; i++)
                    {
                        s[k] = Maths.Hypot(s[k], A[i][k]);
                    }
                    if (s[k] != 0.0)
                    {
                        if (A[k][k] < 0.0)
                        {
                            s[k] = -s[k];
                        }

                        for (int i = k; i < m; i++)
                        {
                            A[i][k] /= s[k];
                        }
                        A[k][k] += 1.0;
                    }
                    s[k] = -s[k];
                }

                for (int j = k + 1; j < n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {
                        // Apply the transformation.
                        double t = 0;
                        for (int i = k; i < m; i++)
                        {
                            t += A[i][k] * A[i][j];
                        }
                        t = -t / A[k][k];

                        for (int i = k; i < m; i++)
                        {
                            A[i][j] += t * A[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.
                    e[j] = A[k][j];
                }

                if (wantu & (k < nct))
                {
                    // Place the transformation in U for subsequent back multiplication.
                    for (int i = k; i < m; i++)
                    {
                        U[i][k] = A[i][k];
                    }
                }

                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;
                    for (int i = k + 1; i < n; i++)
                    {
                        e[k] = Maths.Hypot(e[k], e[i]);
                    }
                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = -e[k];
                        }
                        for (int i = k + 1; i < n; i++)
                        {
                            e[i] /= e[k];
                        }
                        e[k + 1] += 1.0;
                    }
                    e[k] = -e[k];

                    if ((k + 1 < m) & (e[k] != 0.0))
                    {
                        // Apply the transformation.
                        for (int i = k + 1; i < m; i++)
                        {
                            work[i] = 0.0;
                        }

                        for (int j = k + 1; j < n; j++)
                        {
                            for (int i = k + 1; i < m; i++)
                            {
                                work[i] += e[j] * A[i][j];
                            }
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            double t = -e[j] / e[k + 1];
                            for (int i = k + 1; i < m; i++)
                            {
                                A[i][j] += t * work[i];
                            }
                        }
                    }

                    if (wantv)
                    {
                        // Place the transformation in V for subsequent back multiplication.
                        for (int i = k + 1; i < n; i++)
                        {
                            V[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.

            int p = Math.Min(n, m + 1);

            if (nct < n)
            {
                s[nct] = A[nct][nct];
            }

            if (m < p)
            {
                s[p - 1] = 0.0;
            }

            if (nrt + 1 < p)
            {
                e[nrt] = A[nrt][p - 1];
            }
            e[p - 1] = 0.0;

            // If required, generate U.
            if (wantu)
            {
                for (int j = nct; j < nu; j++)
                {
                    for (int i = 0; i < m; i++)
                    {
                        U[i][j] = 0.0;
                    }
                    U[j][j] = 1.0;
                }
                for (int k = nct - 1; k >= 0; k--)
                {
                    if (s[k] != 0.0)
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k; i < m; i++)
                            {
                                t += U[i][k] * U[i][j];
                            }
                            t = -t / U[k][k];
                            for (int i = k; i < m; i++)
                            {
                                U[i][j] += t * U[i][k];
                            }
                        }

                        for (int i = k; i < m; i++)
                        {
                            U[i][k] = -U[i][k];
                        }
                        U[k][k] = 1.0 + U[k][k];

                        for (int i = 0; i < k - 1; i++)
                        {
                            U[i][k] = 0.0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < m; i++)
                        {
                            U[i][k] = 0.0;
                        }
                        U[k][k] = 1.0;
                    }
                }
            }

            // If required, generate V.
            if (wantv)
            {
                for (int k = n - 1; k >= 0; k--)
                {
                    if ((k < nrt) & (e[k] != 0.0))
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k + 1; i < n; i++)
                            {
                                t += V[i][k] * V[i][j];
                            }
                            t = -t / V[k + 1][k];
                            for (int i = k + 1; i < n; i++)
                            {
                                V[i][j] += t * V[i][k];
                            }
                        }
                    }
                    for (int i = 0; i < n; i++)
                    {
                        V[i][k] = 0.0;
                    }
                    V[k][k] = 1.0;
                }
            }

            // Main iteration loop for the singular values.
            int    pp   = p - 1;
            int    iter = 0;
            double eps  = Math.Pow(2.0, -52.0);
            double tiny = Math.Pow(2.0, -966.0);

            while (p > 0)
            {
                int k, kase;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays.  On
                // completion the variables kase and k are set as follows.

                // kase = 1     if s(p) and e[k-1] are negligible and k<p
                // kase = 2     if s(k) is negligible and k<p
                // kase = 3     if e[k-1] is negligible, k<p, and
                //              s(k), ..., s(p) are not negligible (qr step).
                // kase = 4     if e(p-1) is negligible (convergence).

                for (k = p - 2; k >= -1; k--)
                {
                    if (k == -1)
                    {
                        break;
                    }
                    if (Math.Abs(e[k]) <= tiny + eps * (Math.Abs(s[k]) + Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }

                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }
                        double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0.0);
                        if (Math.Abs(s[ks]) <= tiny + eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }

                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k    = ks;
                    }
                }
                k++;

                // Perform the task indicated by kase.
                switch (kase)
                {
                // Deflate negligible s(p).
                case 1:
                {
                    double f = e[p - 2];
                    e[p - 2] = 0.0;
                    for (int j = p - 2; j >= k; j--)
                    {
                        double t  = Maths.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        if (j != k)
                        {
                            f        = -sn * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t           = cs * V[i][j] + sn * V[i][p - 1];
                                V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
                                V[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Split at negligible s(k).
                case 2:
                {
                    double f = e[k - 1];
                    e[k - 1] = 0.0;
                    for (int j = k; j < p; j++)
                    {
                        double t  = Maths.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        f    = -sn * e[j];
                        e[j] = cs * e[j];
                        if (wantu)
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t           = cs * U[i][j] + sn * U[i][k - 1];
                                U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
                                U[i][j]     = t;
                            }
                        }
                    }
                }
                break;

                // Perform one qr step.
                case 3:
                {
                    // Calculate the shift.
                    double scale = Math.Max(Math.Max(Math.Max(Math.Max(
                                                                  Math.Abs(s[p - 1]), Math.Abs(s[p - 2])), Math.Abs(e[p - 2])),
                                                     Math.Abs(s[k])), Math.Abs(e[k]));
                    double sp    = s[p - 1] / scale;
                    double spm1  = s[p - 2] / scale;
                    double epm1  = e[p - 2] / scale;
                    double sk    = s[k] / scale;
                    double ek    = e[k] / scale;
                    double b     = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                    double c     = (sp * epm1) * (sp * epm1);
                    double shift = 0.0;
                    if ((b != 0.0) | (c != 0.0))
                    {
                        shift = Math.Sqrt(b * b + c);
                        if (b < 0.0)
                        {
                            shift = -shift;
                        }
                        shift = c / (b + shift);
                    }
                    double f = (sk + sp) * (sk - sp) + shift;
                    double g = sk * ek;

                    // Chase zeros.
                    for (int j = k; j < p - 1; j++)
                    {
                        double t  = Maths.Hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;
                        if (j != k)
                        {
                            e[j - 1] = t;
                        }
                        f        = cs * s[j] + sn * e[j];
                        e[j]     = cs * e[j] - sn * s[j];
                        g        = sn * s[j + 1];
                        s[j + 1] = cs * s[j + 1];
                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t           = cs * V[i][j] + sn * V[i][j + 1];
                                V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
                                V[i][j]     = t;
                            }
                        }
                        t        = Maths.Hypot(f, g);
                        cs       = f / t;
                        sn       = g / t;
                        s[j]     = t;
                        f        = cs * e[j] + sn * s[j + 1];
                        s[j + 1] = -sn * e[j] + cs * s[j + 1];
                        g        = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];
                        if (wantu && (j < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t           = cs * U[i][j] + sn * U[i][j + 1];
                                U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
                                U[i][j]     = t;
                            }
                        }
                    }
                    e[p - 2] = f;
                    iter     = iter + 1;
                }
                break;

                // Convergence.
                case 4:
                {
                    // Make the singular values positive.
                    if (s[k] <= 0.0)
                    {
                        s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
                        if (wantv)
                        {
                            for (int i = 0; i <= pp; i++)
                            {
                                V[i][k] = -V[i][k];
                            }
                        }
                    }

                    // Order the singular values.
                    while (k < pp)
                    {
                        if (s[k] >= s[k + 1])
                        {
                            break;
                        }
                        double t = s[k];
                        s[k]     = s[k + 1];
                        s[k + 1] = t;
                        if (wantv && (k < n - 1))
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t = V[i][k + 1]; V[i][k + 1] = V[i][k]; V[i][k] = t;
                            }
                        }
                        if (wantu && (k < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t = U[i][k + 1]; U[i][k + 1] = U[i][k]; U[i][k] = t;
                            }
                        }
                        k++;
                    }
                    iter = 0;
                    p--;
                }
                break;
                }
            }
        }