public override void AddContactPoint(ref IndexedVector3 normalOnBInWorld, ref IndexedVector3 pointInWorld, float orgDepth) { IndexedVector3 endPt, startPt; float newDepth; IndexedVector3 newNormal = new IndexedVector3(0, 1, 0); if (m_perturbA) { IndexedVector3 endPtOrg = pointInWorld + normalOnBInWorld * orgDepth; endPt = (m_unPerturbedTransform * m_transformA.Inverse()) * (endPtOrg); newDepth = IndexedVector3.Dot((endPt - pointInWorld), normalOnBInWorld); startPt = endPt + normalOnBInWorld * newDepth; } else { endPt = pointInWorld + normalOnBInWorld * orgDepth; startPt = (m_unPerturbedTransform * m_transformB.Inverse()) * (pointInWorld); newDepth = IndexedVector3.Dot((endPt - startPt), normalOnBInWorld); } //#define DEBUG_CONTACTS 1 #if DEBUG_CONTACTS m_debugDrawer.DrawLine(startPt, endPt, new IndexedVector3(1, 0, 0)); m_debugDrawer.DrawSphere(startPt, 0.5f, new IndexedVector3(0, 1, 0)); m_debugDrawer.DrawSphere(endPt, 0.5f, new IndexedVector3(0, 0, 1)); #endif //DEBUG_CONTACTS m_originalManifoldResult.AddContactPoint(ref normalOnBInWorld, ref startPt, newDepth); }
public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) { if (m_manifoldPtr == null) { return; } resultOut.SetPersistentManifold(m_manifoldPtr); SphereShape sphere0 = body0.GetCollisionShape() as SphereShape; SphereShape sphere1 = body1.GetCollisionShape() as SphereShape; IndexedVector3 diff = body0.GetWorldTransform()._origin - body1.GetWorldTransform()._origin; float len = diff.Length(); float radius0 = sphere0.GetRadius(); float radius1 = sphere1.GetRadius(); #if CLEAR_MANIFOLD m_manifoldPtr.clearManifold(); //don't do this, it disables warmstarting #endif ///iff distance positive, don't generate a new contact if (len > (radius0 + radius1)) { #if !CLEAR_MANIFOLD resultOut.RefreshContactPoints(); #endif //CLEAR_MANIFOLD return; } ///distance (negative means penetration) float dist = len - (radius0 + radius1); IndexedVector3 normalOnSurfaceB = new IndexedVector3(1, 0, 0); if (len > MathUtil.SIMD_EPSILON) { normalOnSurfaceB = diff / len; } ///point on A (worldspace) ///btVector3 pos0 = col0->getWorldTransform().getOrigin() - radius0 * normalOnSurfaceB; ///point on B (worldspace) IndexedVector3 pos1 = body1.GetWorldTransform()._origin + radius1 * normalOnSurfaceB; /// report a contact. internally this will be kept persistent, and contact reduction is done resultOut.AddContactPoint(ref normalOnSurfaceB, ref pos1, dist); #if !CLEAR_MANIFOLD resultOut.RefreshContactPoints(); #endif //CLEAR_MANIFOLD }
public void AddContactPoint(CollisionObject body0, CollisionObject body1, ref IndexedVector3 point, ref IndexedVector3 normal, float distance) { #if DEBUG if (BulletGlobals.g_streamWriter != null && BulletGlobals.debugGimpactAlgo) { BulletGlobals.g_streamWriter.WriteLine("GImpactAlgo::AddContactPoint"); MathUtil.PrintVector3(BulletGlobals.g_streamWriter, "point", point); MathUtil.PrintVector3(BulletGlobals.g_streamWriter, "normal", normal); } #endif m_resultOut.SetShapeIdentifiersA(m_part0, m_triface0); m_resultOut.SetShapeIdentifiersB(m_part1, m_triface1); CheckManifold(body0, body1); m_resultOut.AddContactPoint(normal, point, distance); }
public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) { //(void)dispatchInfo; //(void)resultOut; if (m_manifoldPtr == null) { return; } CollisionObject sphereObj = m_isSwapped ? body1 : body0; CollisionObject boxObj = m_isSwapped ? body0 : body1; IndexedVector3 pOnBox = new IndexedVector3();; IndexedVector3 normalOnSurfaceB = new IndexedVector3(); float penetrationDepth = 0f; IndexedVector3 sphereCenter = sphereObj.GetWorldTransform()._origin; SphereShape sphere0 = sphereObj.GetCollisionShape() as SphereShape; float radius = sphere0.GetRadius(); float maxContactDistance = m_manifoldPtr.GetContactBreakingThreshold(); resultOut.SetPersistentManifold(m_manifoldPtr); if (GetSphereDistance(boxObj, ref pOnBox, ref normalOnSurfaceB, ref penetrationDepth, sphereCenter, radius, maxContactDistance)) { /// report a contact. internally this will be kept persistent, and contact reduction is done resultOut.AddContactPoint(normalOnSurfaceB, pOnBox, penetrationDepth); } if (m_ownManifold) { if (m_manifoldPtr.GetNumContacts() > 0) { resultOut.RefreshContactPoints(); } } }
public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) { if (m_manifoldPtr == null) { //swapped? m_manifoldPtr = m_dispatcher.GetNewManifold(body0, body1); m_ownManifold = true; } //resultOut = new ManifoldResult(); resultOut.SetPersistentManifold(m_manifoldPtr); //comment-out next line to test multi-contact generation //resultOut.GetPersistentManifold().ClearManifold(); ConvexShape min0 = body0.GetCollisionShape() as ConvexShape; ConvexShape min1 = body1.GetCollisionShape() as ConvexShape; IndexedVector3 normalOnB; IndexedVector3 pointOnBWorld; #if !BT_DISABLE_CAPSULE_CAPSULE_COLLIDER if ((min0.GetShapeType() == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE) && (min1.GetShapeType() == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE)) { CapsuleShape capsuleA = min0 as CapsuleShape; CapsuleShape capsuleB = min1 as CapsuleShape; //IndexedVector3 localScalingA = capsuleA.GetLocalScaling(); //IndexedVector3 localScalingB = capsuleB.GetLocalScaling(); float threshold = m_manifoldPtr.GetContactBreakingThreshold(); float dist = CapsuleCapsuleDistance(out normalOnB, out pointOnBWorld, capsuleA.GetHalfHeight(), capsuleA.GetRadius(), capsuleB.GetHalfHeight(), capsuleB.GetRadius(), capsuleA.GetUpAxis(), capsuleB.GetUpAxis(), body0.GetWorldTransform(), body1.GetWorldTransform(), threshold); if (dist < threshold) { Debug.Assert(normalOnB.LengthSquared() >= (MathUtil.SIMD_EPSILON * MathUtil.SIMD_EPSILON)); resultOut.AddContactPoint(ref normalOnB, ref pointOnBWorld, dist); } resultOut.RefreshContactPoints(); return; } #endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER #if USE_SEPDISTANCE_UTIL2 if (dispatchInfo.m_useConvexConservativeDistanceUtil) { m_sepDistance.updateSeparatingDistance(body0.getWorldTransform(), body1.getWorldTransform()); } if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance() <= 0.f) #endif //USE_SEPDISTANCE_UTIL2 { ClosestPointInput input = ClosestPointInput.Default(); using (GjkPairDetector gjkPairDetector = BulletGlobals.GjkPairDetectorPool.Get()) { gjkPairDetector.Initialize(min0, min1, m_simplexSolver, m_pdSolver); //TODO: if (dispatchInfo.m_useContinuous) gjkPairDetector.SetMinkowskiA(min0); gjkPairDetector.SetMinkowskiB(min1); #if USE_SEPDISTANCE_UTIL2 if (dispatchInfo.m_useConvexConservativeDistanceUtil) { input.m_maximumDistanceSquared = float.MaxValue; } else #endif //USE_SEPDISTANCE_UTIL2 { input.m_maximumDistanceSquared = min0.GetMargin() + min1.GetMargin() + m_manifoldPtr.GetContactBreakingThreshold(); input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared; } //input.m_stackAlloc = dispatchInfo.m_stackAllocator; input.m_transformA = body0.GetWorldTransform(); input.m_transformB = body1.GetWorldTransform(); if (min0.IsPolyhedral() && min1.IsPolyhedral()) { DummyResult dummy = new DummyResult(); PolyhedralConvexShape polyhedronA = min0 as PolyhedralConvexShape; PolyhedralConvexShape polyhedronB = min1 as PolyhedralConvexShape; if (polyhedronA.GetConvexPolyhedron() != null && polyhedronB.GetConvexPolyhedron() != null) { float threshold = m_manifoldPtr.GetContactBreakingThreshold(); float minDist = float.MinValue; IndexedVector3 sepNormalWorldSpace = new IndexedVector3(0, 1, 0); bool foundSepAxis = true; if (dispatchInfo.m_enableSatConvex) { foundSepAxis = PolyhedralContactClipping.FindSeparatingAxis( polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(), body0.GetWorldTransform(), body1.GetWorldTransform(), out sepNormalWorldSpace); } else { #if ZERO_MARGIN gjkPairDetector.SetIgnoreMargin(true); gjkPairDetector.GetClosestPoints(input, resultOut, dispatchInfo.m_debugDraw); #else gjkPairDetector.GetClosestPoints(ref input, dummy, dispatchInfo.m_debugDraw); #endif float l2 = gjkPairDetector.GetCachedSeparatingAxis().LengthSquared(); if (l2 > MathUtil.SIMD_EPSILON) { sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis() * (1.0f / l2); //minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance(); minDist = gjkPairDetector.GetCachedSeparatingDistance() - min0.GetMargin() - min1.GetMargin(); #if ZERO_MARGIN foundSepAxis = true; //gjkPairDetector.getCachedSeparatingDistance()<0.f; #else foundSepAxis = gjkPairDetector.GetCachedSeparatingDistance() < (min0.GetMargin() + min1.GetMargin()); #endif } } if (foundSepAxis) { // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ()); PolyhedralContactClipping.ClipHullAgainstHull(sepNormalWorldSpace, polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(), body0.GetWorldTransform(), body1.GetWorldTransform(), minDist - threshold, threshold, resultOut); } if (m_ownManifold) { resultOut.RefreshContactPoints(); } return; } else { //we can also deal with convex versus triangle (without connectivity data) if (polyhedronA.GetConvexPolyhedron() != null && polyhedronB.GetShapeType() == BroadphaseNativeTypes.TRIANGLE_SHAPE_PROXYTYPE) { m_vertices.Clear(); TriangleShape tri = polyhedronB as TriangleShape; m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[0]); m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[1]); m_vertices.Add(body1.GetWorldTransform() * tri.m_vertices1[2]); float threshold = m_manifoldPtr.GetContactBreakingThreshold(); IndexedVector3 sepNormalWorldSpace = new IndexedVector3(0, 1, 0);; float minDist = float.MinValue; float maxDist = threshold; bool foundSepAxis = false; if (false) { polyhedronB.InitializePolyhedralFeatures(); foundSepAxis = PolyhedralContactClipping.FindSeparatingAxis( polyhedronA.GetConvexPolyhedron(), polyhedronB.GetConvexPolyhedron(), body0.GetWorldTransform(), body1.GetWorldTransform(), out sepNormalWorldSpace); // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ()); } else { #if ZERO_MARGIN gjkPairDetector.SetIgnoreMargin(true); gjkPairDetector.GetClosestPoints(input, resultOut, dispatchInfo.m_debugDraw); #else gjkPairDetector.GetClosestPoints(ref input, dummy, dispatchInfo.m_debugDraw); #endif//ZERO_MARGIN float l2 = gjkPairDetector.GetCachedSeparatingAxis().LengthSquared(); if (l2 > MathUtil.SIMD_EPSILON) { sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis() * (1.0f / l2); //minDist = gjkPairDetector.getCachedSeparatingDistance(); //maxDist = threshold; minDist = gjkPairDetector.GetCachedSeparatingDistance() - min0.GetMargin() - min1.GetMargin(); foundSepAxis = true; } } if (foundSepAxis) { PolyhedralContactClipping.ClipFaceAgainstHull(sepNormalWorldSpace, polyhedronA.GetConvexPolyhedron(), body0.GetWorldTransform(), m_vertices, minDist - threshold, maxDist, resultOut); } if (m_ownManifold) { resultOut.RefreshContactPoints(); } return; } } } gjkPairDetector.GetClosestPoints(ref input, resultOut, dispatchInfo.getDebugDraw(), false); #if USE_SEPDISTANCE_UTIL2 float sepDist = 0.f; if (dispatchInfo.m_useConvexConservativeDistanceUtil) { sepDist = gjkPairDetector.getCachedSeparatingDistance(); if (sepDist > MathUtil.SIMD_EPSILON) { sepDist += dispatchInfo.m_convexConservativeDistanceThreshold; //now perturbe directions to get multiple contact points } } #endif //USE_SEPDISTANCE_UTIL2 //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points if (m_numPerturbationIterations > 0 && resultOut.GetPersistentManifold().GetNumContacts() < m_minimumPointsPerturbationThreshold) { IndexedVector3 v0, v1; IndexedVector3 sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis(); sepNormalWorldSpace.Normalize(); TransformUtil.PlaneSpace1(ref sepNormalWorldSpace, out v0, out v1); bool perturbeA = true; const float angleLimit = 0.125f * MathUtil.SIMD_PI; float perturbeAngle; float radiusA = min0.GetAngularMotionDisc(); float radiusB = min1.GetAngularMotionDisc(); if (radiusA < radiusB) { perturbeAngle = BulletGlobals.gContactBreakingThreshold / radiusA; perturbeA = true; } else { perturbeAngle = BulletGlobals.gContactBreakingThreshold / radiusB; perturbeA = false; } if (perturbeAngle > angleLimit) { perturbeAngle = angleLimit; } IndexedMatrix unPerturbedTransform; if (perturbeA) { unPerturbedTransform = input.m_transformA; } else { unPerturbedTransform = input.m_transformB; } for (int i = 0; i < m_numPerturbationIterations; i++) { if (v0.LengthSquared() > MathUtil.SIMD_EPSILON) { IndexedQuaternion perturbeRot = new IndexedQuaternion(v0, perturbeAngle); float iterationAngle = i * (MathUtil.SIMD_2_PI / (float)m_numPerturbationIterations); IndexedQuaternion rotq = new IndexedQuaternion(sepNormalWorldSpace, iterationAngle); if (perturbeA) { input.m_transformA._basis = (new IndexedBasisMatrix(MathUtil.QuaternionInverse(rotq) * perturbeRot * rotq) * body0.GetWorldTransform()._basis); input.m_transformB = body1.GetWorldTransform(); input.m_transformB = body1.GetWorldTransform(); #if DEBUG_CONTACTS dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformA, 10.0f); #endif //DEBUG_CONTACTS } else { input.m_transformA = body0.GetWorldTransform(); input.m_transformB._basis = (new IndexedBasisMatrix(MathUtil.QuaternionInverse(rotq) * perturbeRot * rotq) * body1.GetWorldTransform()._basis); #if DEBUG_CONTACTS dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformB, 10.0f); #endif } PerturbedContactResult perturbedResultOut = new PerturbedContactResult(resultOut, ref input.m_transformA, ref input.m_transformB, ref unPerturbedTransform, perturbeA, dispatchInfo.getDebugDraw()); gjkPairDetector.GetClosestPoints(ref input, perturbedResultOut, dispatchInfo.getDebugDraw(), false); } } } #if USE_SEPDISTANCE_UTIL2 if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > MathUtil.SIMD_EPSILON)) { m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(), sepDist, body0.getWorldTransform(), body1.getWorldTransform()); } #endif //USE_SEPDISTANCE_UTIL2 } } if (m_ownManifold) { resultOut.RefreshContactPoints(); } }
void B2CollidePolygons(ref ManifoldResult manifold, Box2dShape polyA, ref IndexedMatrix xfA, Box2dShape polyB, ref IndexedMatrix xfB) { int edgeA = 0; float separationA = FindMaxSeparation(ref edgeA, polyA, ref xfA, polyB, ref xfB); if (separationA > 0.0f) { return; } int edgeB = 0; float separationB = FindMaxSeparation(ref edgeB, polyB, ref xfB, polyA, ref xfA); if (separationB > 0.0f) { return; } Box2dShape poly1; // reference poly Box2dShape poly2; // incident poly IndexedMatrix xf1, xf2; int edge1; // reference edge bool flip; const float k_relativeTol = 0.98f; const float k_absoluteTol = 0.001f; // TODO_ERIN use "radius" of poly for absolute tolerance. if (separationB > k_relativeTol * separationA + k_absoluteTol) { poly1 = polyB; poly2 = polyA; xf1 = xfB; xf2 = xfA; edge1 = edgeB; flip = true; } else { poly1 = polyA; poly2 = polyB; xf1 = xfA; xf2 = xfB; edge1 = edgeA; flip = false; } ClipVertex[] incidentEdge = new ClipVertex[2]; FindIncidentEdge(incidentEdge, poly1, ref xf1, edge1, poly2, ref xf2); int count1 = poly1.GetVertexCount(); IndexedVector3[] vertices1 = poly1.GetVertices(); IndexedVector3 v11 = vertices1[edge1]; IndexedVector3 v12 = edge1 + 1 < count1 ? vertices1[edge1 + 1] : vertices1[0]; IndexedVector3 dv = v12 - v11; IndexedVector3 sideNormal = xf1._basis * (v12 - v11); sideNormal.Normalize(); IndexedVector3 frontNormal = CrossS(ref sideNormal, 1.0f); v11 = xf1 * v11; v12 = xf1 * v12; float frontOffset = frontNormal.Dot(ref v11); float sideOffset1 = -(sideNormal.Dot(ref v11)); float sideOffset2 = sideNormal.Dot(ref v12); // Clip incident edge against extruded edge1 side edges. ClipVertex[] clipPoints1 = new ClipVertex[2]; clipPoints1[0].v = IndexedVector3.Zero; clipPoints1[1].v = IndexedVector3.Zero; ClipVertex[] clipPoints2 = new ClipVertex[2]; clipPoints2[0].v = IndexedVector3.Zero; clipPoints2[1].v = IndexedVector3.Zero; int np; // Clip to box side 1 np = ClipSegmentToLine(clipPoints1, incidentEdge, -sideNormal, sideOffset1); if (np < 2) { return; } // Clip to negative box side 1 np = ClipSegmentToLine(clipPoints2, clipPoints1, sideNormal, sideOffset2); if (np < 2) { return; } // Now clipPoints2 contains the clipped points. IndexedVector3 manifoldNormal = flip ? -frontNormal : frontNormal; int pointCount = 0; for (int i = 0; i < b2_maxManifoldPoints; ++i) { float separation = frontNormal.Dot(clipPoints2[i].v) - frontOffset; if (separation <= 0.0f) { //b2ManifoldPoint* cp = manifold.points + pointCount; //float separation = separation; //cp.localPoint1 = b2MulT(xfA, clipPoints2[i].v); //cp.localPoint2 = b2MulT(xfB, clipPoints2[i].v); manifold.AddContactPoint(-manifoldNormal, clipPoints2[i].v, separation); // cp.id = clipPoints2[i].id; // cp.id.features.flip = flip; ++pointCount; } } // manifold.pointCount = pointCount;} }