/// @see Shape::ComputeMass public override void ComputeMass(out MassData massData, float Density) { massData = new MassData(); massData.mass = Density * (float)Math.PI * m_radius * m_radius; massData.center = m_p; // inertia about the local origin massData.I = massData.mass * (0.5f * m_radius * m_radius + Utilities.Dot(m_p, m_p)); }
/// @see Shape::ComputeMass public override void ComputeMass(out MassData massData, float Density) { // Polygon mass, centroid, and inertia. // Let rho be the polygon Density in mass per unit area. // Then: // mass = rho * int(dA) // centroid.X = (1/mass) * rho * int(x * dA) // centroid.Y = (1/mass) * rho * int(y * dA) // I = rho * int((x*x + y*y) * dA) // // We can compute these integrals by summing all the integrals // for each triangle of the polygon. To evaluate the integral // for a single triangle, we make a change of variables to // the (u,v) coordinates of the triangle: // x = x0 + e1x * u + e2x * v // y = y0 + e1y * u + e2y * v // where 0 <= u && 0 <= v && u + v <= 1. // // We integrate u from [0,1-v] and then v from [0,1]. // We also need to use the Jacobian of the transformation: // D = cross(e1, e2) // // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) // // The rest of the derivation is handled by computer algebra. Utilities.Assert(m_count >= 3); Vec2 center = new Vec2(0.0f, 0.0f); float area = 0.0f; float I = 0.0f; // s is the reference point for forming triangles. // It's location doesn't change the result (except for rounding error). Vec2 s = new Vec2(0.0f, 0.0f); // This code would put the reference point inside the polygon. for (int i = 0; i < m_count; ++i) { s += m_vertices[i]; } s *= 1.0f / m_count; const float k_inv3 = 1.0f / 3.0f; for (int i = 0; i < m_count; ++i) { // Triangle vertices. Vec2 e1 = m_vertices[i] - s; Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; float D = Utilities.Cross(e1, e2); float triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid center += triangleArea * k_inv3 * (e1 + e2); float ex1 = e1.X, ey1 = e1.Y; float ex2 = e2.X, ey2 = e2.Y; float intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; float inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; I += (0.25f * k_inv3 * D) * (intx2 + inty2); } // Total mass massData.mass = Density * area; // Center of mass Utilities.Assert(area > Single.Epsilon); center *= 1.0f / area; massData.center = center + s; // Inertia tensor relative to the local origin (point s). massData.I = Density * I; // Shift to center of mass then to original body origin. massData.I += massData.mass * (Utilities.Dot(massData.center, massData.center) - Utilities.Dot(center, center)); }
/// @see Shape::ComputeMass public override void ComputeMass(out MassData massData, float Density) { throw new NotImplementedException(); //massData.mass = 0.0f; //massData.center = 0.5f * (m_vertex1 + m_vertex2); //massData.I = 0.0f; }
/// Chains have zero mass. /// @see Shape::ComputeMass public override void ComputeMass(out MassData massData, float Density){ massData = new MassData(); massData.mass = 0.0f; massData.center.SetZero(); massData.I = 0.0f; }
/// Set the mass properties to override the mass properties of the fixtures. /// Note that this changes the center of mass position. /// Note that creating or destroying fixtures can also alter the mass. /// This function has no effect if the body isn't dynamic. /// @param massData the mass properties. public void SetMassData(MassData data){ Utilities.Assert(m_world.IsLocked() == false); if (m_world.IsLocked() == true) { return; } if (m_type != BodyType._dynamicBody) { return; } m_invMass = 0.0f; m_I = 0.0f; m_invI = 0.0f; m_mass = data.mass; if (m_mass <= 0.0f) { m_mass = 1.0f; } m_invMass = 1.0f / m_mass; if (data.I > 0.0f && (m_flags & Body.BodyFlags.e_fixedRotationFlag) == 0) { m_I = data.I - m_mass * Utilities.Dot(data.center, data.center); Utilities.Assert(m_I > 0.0f); m_invI = 1.0f / m_I; } // Move center of mass. Vec2 oldCenter = m_sweep.c; m_sweep.localCenter = data.center; m_sweep.c0 = m_sweep.c = Utilities.Mul(m_xf, m_sweep.localCenter); // Update center of mass velocity. m_linearVelocity += Utilities.Cross(m_angularVelocity, m_sweep.c - oldCenter); }
/// Get the mass data of the body. /// @return a struct containing the mass, inertia and center of the body. public MassData GetMassData() { MassData data = new MassData(); data.mass = m_mass; data.I = m_I + m_mass * Utilities.Dot(m_sweep.localCenter, m_sweep.localCenter); data.center = m_sweep.localCenter; return data; }
/// Compute the mass properties of this shape using its dimensions and Density. /// The inertia tensor is computed about the local origin. /// @param massData returns the mass data for this shape. /// @param Density the Density in kilograms per meter squared. public abstract void ComputeMass(out MassData massData, float Density);
/// Get the mass data for this fixture. The mass data is based on the Density and /// the shape. The rotational inertia is about the shape's origin. This operation /// may be expensive. public void GetMassData(out MassData massData){ m_shape.ComputeMass(out massData, m_Density); }
/// Get the mass data for this fixture. The mass data is based on the density and /// the Shape. The rotational inertia is about the Shape's origin. public void GetMassData(out MassData massData) { _shape.ComputeMass(out massData, _density); }