public FeaturesWithLabel FeatureSetsGenerator(Vec sentenceVectors, String label) { var labeledFeatureSet = new FeaturesWithLabel(); int j = 1; foreach (double node in sentenceVectors.VecNodes) { Feature feature = new Feature((j++).ToString(), node.ToString()); labeledFeatureSet.Features.Add(feature); } labeledFeatureSet.Label = label; return(labeledFeatureSet); }
public double[][] Predict(FeaturesWithLabel featureSet, ClassifyOptions options) { Problem predict = new Problem(); List <FeaturesWithLabel> featureSets = new List <FeaturesWithLabel>(); featureSets.Add(featureSet); predict.X = GetData(featureSets).ToArray(); predict.Y = new double[1]; predict.Count = predict.X.Count(); predict.MaxIndex = 300; RangeTransform transform = options.Transform; Problem scaled = transform.Scale(predict); return(Prediction.PredictLabelsProbability(options.Model, scaled)); }
public List <FeaturesWithLabel> FeatureSetsGenerator(List <Vec> sentenceVectors, List <String> labels) { var res = new List <FeaturesWithLabel>(); int j; for (int i = 0; i < labels.Count; i++) { string curLabel = labels[i]; Vec curVec = sentenceVectors[i]; var labeledFeatureSet = new FeaturesWithLabel(); j = 1; foreach (double node in curVec.VecNodes) { Feature feature = new Feature((j++).ToString(), node.ToString()); labeledFeatureSet.Features.Add(feature); } labeledFeatureSet.Label = curLabel; res.Add(labeledFeatureSet); } return(res); }