Create() private method

private Create ( DataSet arguments ) : Task
arguments DataSet
return Task
コード例 #1
0
        static async void Main()
        {
            // New BigML client with username and API key
            Console.Write("user: "******"key: "); var ApiKey = Console.ReadLine();
            // set true the development mode
            var client = new Client(User, ApiKey, true);

            // create a source
            var remoteURL = @"azure://csv/iris.csv?AccountName=bigmlpublic";
            Source.Arguments remoteArguments = new Source.Arguments();
            remoteArguments.Add("remote", remoteURL);
            var sourceFromAzure = await client.Create(remoteArguments);
            while ((sourceFromAzure = await client.Get(sourceFromAzure)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);
            Console.WriteLine(sourceFromAzure.StatusMessage.ToString());

            var dataset = await client.Create(sourceFromAzure);
            // No push, so we need to busy wait for the dataset to be processed.
            while ((dataset = await client.Get(dataset)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);
            Console.WriteLine(dataset.StatusMessage.ToString());

            // Customized cluster from dataset. 3 is the desired number of cluster. Sets cluster name: "my cluster"
            var cluster = await client.CreateCluster(dataset, "my cluster", 3);
            while ((cluster = await client.Get(cluster)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);
            Console.WriteLine(cluster.StatusMessage.ToString());
        }
コード例 #2
0
        static async void Main()
        {
            // New BigML client with username and API key
            Console.Write("user: "******"key: "); var ApiKey = Console.ReadLine();
            var client = new Client(User, ApiKey);

            // Create a source from a file in azure storage
            var remoteURL = @"azure://csv/iris.csv?AccountName=bigmlpublic";
            Source.Arguments remoteArguments = new Source.Arguments();
            remoteArguments.Remote = remoteURL;
            remoteArguments.Name = "Iris from Azure";
            var sourceFromAzure = await client.Create(remoteArguments);
            while ((sourceFromAzure = await client.Get(sourceFromAzure)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);

            // Create a dataset from this sources
            var dataset = await client.Create(sourceFromAzure);
            while ((dataset = await client.Get(dataset)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);
            Console.WriteLine(dataset.StatusMessage.ToString());

            // Default model from this dataset
            var model = await client.Create(dataset);
            // No push, so we need to busy wait for the source to be processed.
            while ((model = await client.Get(model)).StatusMessage.NotSuccessOrFail()) await Task.Delay(10);
            Console.WriteLine(model.StatusMessage.ToString());
        }
コード例 #3
0
        /// <summary>
        /// Simple sample that runs through all steps to explicitly create a prediction 
        /// from a csv file with the classic iris data.
        /// </summary>
        static async Task MainAsync()
        {
            // New BigML client using username and API key.
            Console.Write("user: "******"key: "); var ApiKey = Console.ReadLine();
            var client = new Client(User, ApiKey);

            Ordered<Source.Filterable, Source.Orderable, Source> result
                = (from s in client.ListSources()
                   orderby s.Created descending
                   select s);

            var sources = await result;

            foreach(var src in sources)
            {
                Console.WriteLine(src.ToString());
            }

            // New source from in-memory stream, with separate header.
            var source = await client.Create(iris, "Iris.csv", "sepal length, sepal width, petal length, petal width, species");
            // No push, so we need to busy wait for the source to be processed.
            while ((source = await client.Get(source)).StatusMessage.StatusCode != Code.Finished) await Task.Delay(10);
            Console.WriteLine(source.StatusMessage.ToString());

            // Default dataset from source
            var dataset = await client.Create(source);
            // No push, so we need to busy wait for the source to be processed.
            while ((dataset = await client.Get(dataset)).StatusMessage.StatusCode != Code.Finished) await Task.Delay(10);
            Console.WriteLine(dataset.StatusMessage.ToString());

            // Default model from dataset
            var model = await client.Create(dataset);
            // No push, so we need to busy wait for the source to be processed.
            while ((model = await client.Get(model)).StatusMessage.StatusCode != Code.Finished) await Task.Delay(10);
            Console.WriteLine(model.StatusMessage.ToString());

            // The model description is what we are really after
            var description = model.ModelDescription;
            Console.WriteLine(description.ToString());

            // First convert it to a .NET expression tree
            var expression = description.Expression();
            Console.WriteLine(expression.ToString());

            // Then compile the expression tree into MSIL
            var predict = expression.Compile() as Func<double,double,double,double,string>;

            // And try the first flower of the example set.
            var result2 = predict(5.1, 3.5, 1.4, 0.2);
            Console.WriteLine("result = {0}, expected = {1}", result2, "setosa");
        }
コード例 #4
0
        static async void Main()
        {
            // New BigML client with username and API key
            Console.Write("user: "******"key: "); var ApiKey = Console.ReadLine();
            var client = new Client(User, ApiKey);

            // retrieve a anomaly detector with a known ID
            Anomaly anomaly;
            string anomalyId = "anomaly/54daa82eaf447f5daa000XXY"; //Put your ID here
            if ((anomaly = await client.Get<Anomaly>(anomalyId)).StatusMessage.StatusCode != Code.Finished) {
                Console.WriteLine("Error retrieving anomaly " + anomalyId);
            } else {
                Console.WriteLine(anomaly.StatusMessage.ToString());
            }

            //Input the data and calculate the score
            var parameters = new AnomalyScore.Arguments();
            parameters.Anomaly = anomaly.Resource;
            parameters.InputData.Add("000000", 7.9);
            parameters.InputData.Add("000001", 3.8);
            parameters.InputData.Add("000002", 6.4);
            parameters.InputData.Add("000003", 2);
            parameters.InputData.Add("000004", "virginica");
            AnomalyScore score;
            while ((score = await client.Create<AnomalyScore>(parameters)).StatusMessage.StatusCode != Code.Finished) await Task.Delay(10);
            Console.WriteLine(score.StatusMessage.ToString());

        }