Association Discovery is a popular method to find out relations among values in high-dimensional datasets. It is commonly used for basket market analysis. This analysis seeks for customer shopping patterns across large transactional datasets. For instance, do customers who buy hamburgers and ketchup also consume bread? Businesses use those insights to make decisions on promotions and product placements. Association Discovery can also be used for other purposes such as early incident detection, web usage analysis, or software intrusion detection. The complete and updated reference with all available parameters is in our documentation website.
Inheritance: Response
コード例 #1
0
 /// <summary>
 /// Create an association.
 /// </summary>
 /// <param name="dataset">A DataSet instance</param>
 /// <param name="name">The name you want to give to the new association. </param>
 /// <param name="arguments">An object with more association parameters.</param>
 public Task<Association> CreateAssociation(DataSet dataset, string name = null,
                                     Association.Arguments arguments = null)
 {
     arguments = arguments ?? new Association.Arguments();
     if (!string.IsNullOrWhiteSpace(name)) arguments.Name = name;
     arguments.DataSet = dataset.Resource;
     return Create<Association>(arguments);
 }
コード例 #2
0
 /// <summary>
 /// Create an association using supplied arguments.
 /// </summary>
 public Task<Association> CreateAssociation(Association.Arguments arguments)
 {
     return Create<Association>(arguments);
 }