/// <summary> /// Computes the distance in input space /// between two points given in feature space. /// </summary> /// /// <param name="x">Vector <c>x</c> in feature (kernel) space.</param> /// <param name="y">Vector <c>y</c> in feature (kernel) space.</param> /// /// <returns>Distance between <c>x</c> and <c>y</c> in input space.</returns> /// public override double Distance(double[] x, double[] y) { if (x == y) { return(0.0); } double norm = SparseLinear.SquaredEuclidean(x, y); return(2 - 2 * Math.Exp(-gamma * Math.Sqrt(norm))); }
/// <summary> /// Computes the squared distance in input space /// between two points given in feature space. /// </summary> /// /// <param name="x">Vector <c>x</c> in feature (kernel) space.</param> /// <param name="y">Vector <c>y</c> in feature (kernel) space.</param> /// /// <returns> /// Squared distance between <c>x</c> and <c>y</c> in input space. /// </returns> /// public double ReverseDistance(double[] x, double[] y) { if (x == y) { return(0.0); } double norm = SparseLinear.SquaredEuclidean(x, y); return(-(1.0 / gamma) * Math.Log(1.0 - 0.5 * norm)); }
/// <summary> /// Laplacian Kernel function. /// </summary> /// /// <param name="x">Vector <c>x</c> in input space.</param> /// <param name="y">Vector <c>y</c> in input space.</param> /// <returns>Dot product in feature (kernel) space.</returns> /// public override double Function(double[] x, double[] y) { // Optimization in case x and y are // exactly the same object reference. if (x == y) { return(1.0); } double norm = SparseLinear.SquaredEuclidean(x, y); return(Math.Exp(-gamma * Math.Sqrt(norm))); }
/// <summary> /// Cauchy Kernel Function /// </summary> /// /// <param name="x">Vector <c>x</c> in input space.</param> /// <param name="y">Vector <c>y</c> in input space.</param> /// /// <returns>Dot product in feature (kernel) space.</returns> /// public override double Function(double[] x, double[] y) { // Optimization in case x and y are // exactly the same object reference. if (x == y) { return(1.0); } double norm = SparseLinear.SquaredEuclidean(x, y); return(1.0 / (1.0 + norm / Sigma)); }
/// <summary> /// Polynomial kernel function. /// </summary> /// /// <param name="x">Vector <c>x</c> in input space.</param> /// <param name="y">Vector <c>y</c> in input space.</param> /// <returns>Dot product in feature (kernel) space.</returns> /// public override double Function(double[] x, double[] y) { double sum = SparseLinear.Product(x, y) + constant; return(Math.Pow(sum, Degree)); }
/// <summary> /// Sigmoid kernel function. /// </summary> /// /// <param name="x">Vector <c>x</c> in input space.</param> /// <param name="y">Vector <c>y</c> in input space.</param> /// <returns>Dot product in feature (kernel) space.</returns> /// public override double Function(double[] x, double[] y) { double sum = SparseLinear.Product(x, y); return(System.Math.Tanh(Gamma * sum + Constant)); }