internal NestedLogisticCoefficient(StepwiseLogisticRegressionModel analysis, int index) { this.analysis = analysis; this.index = index; }
/// <summary> /// Computes one step of the Stepwise Logistic Regression Analysis. /// </summary> /// <returns> /// Returns the index of the variable discarded in the step or -1 /// in case no variable could be discarded. /// </returns> /// public int DoStep() { ChiSquareTest[] tests = null; // Check if we are performing the first step if (currentModel == null) { // This is the first step. We should create the full model. int inputCount = inputData[0].Length; LogisticRegression regression = new LogisticRegression(inputCount); int[] variables = Matrix.Indices(0, inputCount); fit(regression, inputData, outputData); ChiSquareTest test = regression.ChiSquare(inputData, outputData); fullLikelihood = regression.GetLogLikelihood(inputData, outputData); if (Double.IsNaN(fullLikelihood)) { throw new ConvergenceException( "Perfect separation detected. Please rethink the use of logistic regression."); } tests = new ChiSquareTest[regression.Coefficients.Length]; currentModel = new StepwiseLogisticRegressionModel(this, regression, variables, test, tests); completeModel = currentModel; } // Verify first if a variable reduction is possible if (currentModel.Regression.Inputs == 1) { return(-1); // cannot reduce further } // Now go and create the diminished nested models var nestedModels = new StepwiseLogisticRegressionModel[currentModel.Regression.Inputs]; for (int i = 0; i < nestedModels.Length; i++) { // Create a diminished nested model without the current variable LogisticRegression regression = new LogisticRegression(currentModel.Regression.Inputs - 1); int[] variables = currentModel.Variables.RemoveAt(i); double[][] subset = inputData.Submatrix(0, inputData.Length - 1, variables); fit(regression, subset, outputData); // Check the significance of the nested model double logLikelihood = regression.GetLogLikelihood(subset, outputData); double ratio = 2.0 * (fullLikelihood - logLikelihood); ChiSquareTest test = new ChiSquareTest(ratio, inputNames.Length - variables.Length) { Size = threshold }; if (tests != null) { tests[i + 1] = test; } // Store the nested model nestedModels[i] = new StepwiseLogisticRegressionModel(this, regression, variables, test, null); } // Select the model with the highest p-value double pmax = 0; int imax = -1; for (int i = 0; i < nestedModels.Length; i++) { if (nestedModels[i].ChiSquare.PValue >= pmax) { imax = i; pmax = nestedModels[i].ChiSquare.PValue; } } // Create the read-only nested model collection this.nestedModelCollection = new StepwiseLogisticRegressionModelCollection(nestedModels); // If the model with highest p-value is not significant, if (imax >= 0 && pmax > threshold) { // Then this means the variable can be safely discarded from the full model int removed = currentModel.Variables[imax]; // Our diminished nested model will become our next full model. this.currentModel = nestedModels[imax]; // Finally, return the index of the removed variable return(removed); } else { // Else we can not safely remove any variable from the model. return(-1); } }