コード例 #1
0
ファイル: Rank.cs プロジェクト: neuhauser/perseus-plugins
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceParam access = param.GetSingleChoiceParam("Matrix access");
            bool rows = access.Value == 0;
            Rank1(rows, mdata);
        }
コード例 #2
0
        public void ProcessData(IMatrixData data, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            bool falseAreIndicated = param.GetSingleChoiceParam("Indicated are").Value == 0;
            int catCol = param.GetSingleChoiceParam("In column").Value;
            string word = param.GetStringParam("Indicator").Value;
            int[] scoreColumns = param.GetMultiChoiceParam("Scores").Value;
            if (scoreColumns.Length == 0){
                processInfo.ErrString = "Please specify at least one column with scores.";
                return;
            }
            bool largeIsGood = param.GetBoolParam("Large values are good").Value;
            int[] showColumns = param.GetMultiChoiceParam("Display quantity").Value;
            if (showColumns.Length == 0){
                processInfo.ErrString = "Please select at least one quantity to display";
                return;
            }
            bool[] indCol = GetIndicatorColumn(falseAreIndicated, catCol, word, data);
            List<string> expColNames = new List<string>();
            List<float[]> expCols = new List<float[]>();
            foreach (int scoreColumn in scoreColumns){
                double[] vals = scoreColumn < data.NumericColumnCount
                    ? data.NumericColumns[scoreColumn]
                    : ArrayUtils.ToDoubles(data.GetExpressionColumn(scoreColumn - data.NumericColumnCount));
                string name = scoreColumn < data.NumericColumnCount
                    ? data.NumericColumnNames[scoreColumn] : data.ExpressionColumnNames[scoreColumn - data.NumericColumnCount];
                int[] order = GetOrder(vals, largeIsGood);
                CalcCurve(ArrayUtils.SubArray(indCol, order), showColumns, name, expCols, expColNames);
            }
            float[,] expData = ToMatrix(expCols);
            data.SetData(data.Name, expColNames, expData, new List<string>(), new List<string[]>(), new List<string>(),
                new List<string[][]>(), new List<string>(), new List<double[]>(), new List<string>(), new List<double[][]>());
        }
コード例 #3
0
 private static bool GetReduceMatrix(Parameters parameters)
 {
     return parameters.GetSingleChoiceParam("Filter mode").Value == 0;
 }
コード例 #4
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     int colIndex = param.GetSingleChoiceParam("Control column").Value;
     if (colIndex < mdata.ExpressionColumnCount){
         DivideByColumn(mdata, colIndex);
     } else{
         DivideByColumnNum(mdata, colIndex - mdata.ExpressionColumnCount);
     }
 }
コード例 #5
0
 private static void ProcessDataRename(IMatrixData mdata, Parameters param)
 {
     int groupColInd = param.GetSingleChoiceParam("Numerical row").Value;
     string newName = param.GetStringParam("New name").Value;
     string newDescription = param.GetStringParam("New description").Value;
     mdata.NumericRowNames[groupColInd] = newName;
     mdata.NumericRowDescriptions[groupColInd] = newDescription;
 }
コード例 #6
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     string[][] col = mdata.CategoryColumns[param.GetSingleChoiceParam("Indicator column").Value];
     string term = param.GetStringParam("Value").Value;
     List<int> inds = new List<int>();
     for (int i = 0; i < col.Length; i++){
         if (Contains(col[i], term)){
             inds.Add(i);
         }
     }
     float[][] profiles = new float[inds.Count][];
     for (int i = 0; i < profiles.Length; i++){
         profiles[i] = mdata.GetExpressionRow(inds[i]);
         float mean = (float) ArrayUtils.Mean(profiles[i]);
         for (int j = 0; j < profiles[i].Length; j++){
             profiles[i][j] -= mean;
         }
     }
     float[] totalProfile = new float[mdata.ExpressionColumnCount];
     for (int i = 0; i < totalProfile.Length; i++){
         List<float> vals = new List<float>();
         foreach (float[] t in profiles){
             float val = t[i];
             if (float.IsNaN(val) || float.IsInfinity(val)){
                 continue;
             }
             vals.Add(val);
         }
         totalProfile[i] = vals.Count > 0 ? ArrayUtils.Median(vals) : float.NaN;
     }
     for (int i = 0; i < mdata.RowCount; i++){
         for (int j = 0; j < mdata.ExpressionColumnCount; j++){
             mdata[i, j] -= totalProfile[j];
         }
     }
 }
コード例 #7
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     double width = param.GetDoubleParam("Width").Value;
     double shift = param.GetDoubleParam("Down shift").Value;
     bool separateColumns = param.GetSingleChoiceParam("Mode").Value == 0;
     if (separateColumns){
         ReplaceMissingsByGaussianByColumn(width, shift, mdata);
     } else{
         ReplaceMissingsByGaussianWholeMatrix(width, shift, mdata);
     }
 }
コード例 #8
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int nameCol = param.GetSingleChoiceParam("New column names").Value;
            List<string> colNames;
            if (nameCol >= 0){
                HashSet<string> taken = new HashSet<string>();
                colNames = new List<string>();
                foreach (string n in mdata.StringColumns[nameCol]){
                    string n1 = GetNextAvailableName(n, taken);
                    taken.Add(n1);
                    colNames.Add(n1);
                }
            } else{
                colNames = new List<string>();
                for (int i = 0; i < mdata.RowCount; i++){
                    colNames.Add("Column" + (i + 1));
                }
            }
            List<string> rowNames = mdata.ExpressionColumnNames;
            mdata.SetData(mdata.Name, mdata.Description, colNames, colNames, ArrayUtils.Transpose(mdata.ExpressionValues),
                ArrayUtils.Transpose(mdata.IsImputed), ArrayUtils.Transpose(mdata.QualityValues), mdata.QualityName,
                mdata.QualityBiggerIsBetter, new List<string>(new[]{"Name"}), new List<string>(new[]{"Name"}),
                new List<string[]>(new[]{rowNames.ToArray()}), mdata.CategoryRowNames, mdata.CategoryRowDescriptions,
                GetCategoryRows(mdata), mdata.NumericRowNames, mdata.NumericRowDescriptions, mdata.NumericRows, new List<string>(),
                new List<string>(), new List<double[][]>(), mdata.CategoryColumnNames, mdata.CategoryColumnDescriptions,
                GetCategoryColumns(mdata), mdata.NumericColumnNames, mdata.NumericColumnDescriptions, mdata.NumericColumns);
        }
コード例 #9
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     bool rows = param.GetSingleChoiceParam("Matrix access").Value == 0;
     bool atLeast = param.GetSingleChoiceParam("Side").Value == 0;
     int numValids = param.GetIntParam("Number of valid values").Value;
     SingleChoiceWithSubParams modeParam = param.GetSingleChoiceWithSubParams("Mode");
     int modeInd = modeParam.Value;
     if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
         processInfo.ErrString = "No grouping is defined.";
         return;
     }
     if (modeInd != 0 && !rows){
         processInfo.ErrString = "Group-wise filtering can only be appled to rows.";
         return;
     }
     if (modeInd != 0){
         int gind = modeParam.GetSubParameters().GetSingleChoiceParam("Grouping").Value;
         string[][] groupCol = mdata.CategoryRows[gind];
         ValidValueFilterGroup(numValids, mdata, param, modeInd == 2, groupCol, atLeast);
     } else{
         ValidValueFilter1(rows, numValids, mdata, param, atLeast);
     }
 }
コード例 #10
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     int colInd = param.GetSingleChoiceParam("Column").Value;
     string value = param.GetStringParam("Find").Value;
     bool remove = param.GetSingleChoiceParam("Mode").Value == 0;
     string[][] cats = mdata.CategoryColumns[colInd];
     List<int> valids = new List<int>();
     for (int i = 0; i < cats.Length; i++){
         bool valid = true;
         foreach (string w in cats[i]){
             if (w.Equals(value)){
                 valid = false;
                 break;
             }
         }
         if ((valid && remove) || (!valid && !remove)){
             valids.Add(i);
         }
     }
     mdata.ExtractExpressionRows(valids.ToArray());
 }
コード例 #11
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            float[,] q = new float[mdata.RowCount,mdata.ExpressionColumnCount];
            for (int j = 0; j < mdata.ExpressionColumnCount; j++){
                int ind = param.GetSingleChoiceParam(mdata.ExpressionColumnNames[j]).Value;
                double[] w = mdata.NumericColumns[ind];
                for (int i = 0; i < mdata.RowCount; i++){
                    q[i, j] = (float) w[i];
                }
            }
            mdata.QualityValues = q;
            mdata.QualityBiggerIsBetter = false;
        }
コード例 #12
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int ind = param.GetSingleChoiceParam("Column").Value;
            bool descending = param.GetBoolParam("Descending").Value;
            if (ind < mdata.ExpressionColumnCount){
                float[] v = mdata.GetExpressionColumn(ind);
                int[] o = ArrayUtils.Order(v);
                if (descending){
                    ArrayUtils.Revert(o);
                }
                mdata.ExtractExpressionRows(o);
            } else{
                double[] v = mdata.NumericColumns[ind - mdata.ExpressionColumnCount];
                int[] o = ArrayUtils.Order(v);
                if (descending){
                    ArrayUtils.Revert(o);
                }
                mdata.ExtractExpressionRows(o);
            }
        }
コード例 #13
0
ファイル: Divide.cs プロジェクト: BAngermann/perseus-plugins
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     SingleChoiceParam access = param.GetSingleChoiceParam("Matrix access");
     bool rows = access.Value == 0;
     int what = param.GetSingleChoiceParam("Divide by what").Value;
     DivideImpl(rows, ArrayUtils.Mean, mdata);
     switch (what){
         case 0:
             DivideImpl(rows, ArrayUtils.Mean, mdata);
             break;
         case 1:
             DivideImpl(rows, ArrayUtils.Median, mdata);
             break;
         case 2:
             DivideImpl(rows, ArrayUtils.MostFrequentValue, mdata);
             break;
         default:
             throw new Exception("Never get here.");
     }
 }
コード例 #14
0
ファイル: FilterDE.cs プロジェクト: neuhauser/perseus-plugins
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int colIndex = param.GetSingleChoiceParam("Column with second last AA").Value;
            string aas = param.GetStringParam("Amino acids").Value;
            string[][] col = mdata.GetCategoryColumnAt(colIndex);
            List<int> validRows = new List<int>();
            for (int i = 0; i < mdata.RowCount; i++){
                string[] x = col[i];
                for (int j = 0; j < x.Length; j++){
                    if (x[j].Length != 1){
                        processInfo.ErrString = "Some of the entries in column " + mdata.CategoryColumnNames[colIndex] +
                            " do not contain amino acids";
                        return;
                    }
                }
                bool keep = JudgeIfKept(aas, x);
                if (keep){
                    validRows.Add(i);
                }
            }
            mdata.ExtractExpressionRows(validRows.ToArray());
        }
コード例 #15
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            bool keepEmpty = param.GetBoolParam("Keep rows without ID").Value;
            AverageType atype = GetAverageType(param.GetSingleChoiceParam("Average type for expression columns").Value);
            string[] ids2 = mdata.StringColumns[param.GetSingleChoiceParam("ID column").Value];
            string[][] ids = SplitIds(ids2);
            int[] present;
            int[] absent;
            GetPresentAbsentIndices(ids, out present, out absent);
            ids = ArrayUtils.SubArray(ids, present);
            int[][] rowInds = new int[present.Length][];
            for (int i = 0; i < rowInds.Length; i++){
                rowInds[i] = new[]{present[i]};
            }
            ClusterRows(ref rowInds, ref ids);
            if (keepEmpty){
                rowInds = ProlongRowInds(rowInds, absent);
            }
            int nrows = rowInds.Length;
            int ncols = mdata.ExpressionColumnCount;
            float[,] expVals = new float[nrows,ncols];
            for (int j = 0; j < ncols; j++){
                float[] c = mdata.GetExpressionColumn(j);
                for (int i = 0; i < nrows; i++){
                    float[] d = ArrayUtils.SubArray(c, rowInds[i]);
                    expVals[i, j] = Average(d, atype);
                }
            }
            mdata.ExpressionValues = expVals;
            for (int i = 0; i < mdata.NumericColumnCount; i++){
                string name = mdata.NumericColumnNames[i];
                AverageType atype1 = GetAverageType(param.GetSingleChoiceParam("Average type for " + name).Value);
                double[] c = mdata.NumericColumns[i];
                double[] newCol = new double[nrows];
                for (int k = 0; k < nrows; k++){
                    double[] d = ArrayUtils.SubArray(c, rowInds[k]);
                    newCol[k] = Average(d, atype1);
                }
                mdata.NumericColumns[i] = newCol;
            }
            for (int i = 0; i < mdata.CategoryColumnCount; i++){
                string[][] c = mdata.GetCategoryColumnAt(i);
                string[][] newCol = new string[nrows][];
                for (int k = 0; k < nrows; k++){
                    string[][] d = ArrayUtils.SubArray(c, rowInds[k]);
                    newCol[k] = Average(d);
                }
                mdata.SetCategoryColumnAt(newCol,i);
            }
            for (int i = 0; i < mdata.StringColumnCount; i++){
                string[] c = mdata.StringColumns[i];
                string[] newCol = new string[nrows];
                for (int k = 0; k < nrows; k++){
                    string[] d = ArrayUtils.SubArray(c, rowInds[k]);
                    newCol[k] = Average(d);
                }
                mdata.StringColumns[i] = newCol;
            }
            for (int i = 0; i < mdata.MultiNumericColumnCount; i++){
                double[][] c = mdata.MultiNumericColumns[i];
                double[][] newCol = new double[nrows][];
                for (int k = 0; k < nrows; k++){
                    double[][] d = ArrayUtils.SubArray(c, rowInds[k]);
                    newCol[k] = Average(d);
                }
                mdata.MultiNumericColumns[i] = newCol;
            }
        }
コード例 #16
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     int nameCol = param.GetSingleChoiceParam("New column names").Value;
     float[,] x = ArrayUtils.Transpose(mdata.ExpressionValues);
     List<string> colNames = new List<string>(mdata.StringColumns[nameCol]);
     List<string> rowNames = mdata.ExpressionColumnNames;
     mdata.SetData(mdata.Name, colNames, x, new List<string>(new[]{"Name"}), new List<string[]>(new[]{rowNames.ToArray()}),
         new List<string>(), new List<string[][]>(), new List<string>(), new List<double[]>(), new List<string>(),
         new List<double[][]>());
 }
コード例 #17
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int[] colIndx = param.GetMultiChoiceParam("x").Value;
            int[] colIndy = param.GetMultiChoiceParam("y").Value;
            if (colIndx.Length == 0){
                processInfo.ErrString = "Please select some columns";
                return;
            }
            if (colIndx.Length != colIndy.Length){
                processInfo.ErrString = "Please select the same number of columns in the boxes for the first and second columns.";
                return;
            }
            int typeInd = param.GetSingleChoiceParam("Distribution type").Value;
            int points = param.GetIntParam("Number of points").Value;
            for (int k = 0; k < colIndx.Length; k++){
                float[] xvals = GetColumn(mdata, colIndx[k]);
                float[] yvals = GetColumn(mdata, colIndy[k]);
                float[] xvals1;
                float[] yvals1;
                NumUtils.GetValidPairs(xvals, yvals, out xvals1, out yvals1);
                double xmin;
                double xmax;
                double ymin;
                double ymax;
                DensityEstimation.CalcRanges(xvals1, yvals1, out xmin, out xmax, out ymin, out ymax);
                float[,] values = DensityEstimation.GetValuesOnGrid(xvals1, xmin, (xmax - xmin)/points, points, yvals1, ymin,
                    (ymax - ymin)/points, points);
                if (typeInd == 1 || typeInd == 3){
                    MakeConditional1(values);
                }
                if (typeInd == 2 || typeInd == 3){
                    MakeConditional2(values);
                }
                DensityEstimation.DivideByMaximum(values);
                double[] xmat = new double[points];
                for (int i = 0; i < points; i++){
                    xmat[i] = xmin + i*(xmax - xmin)/points;
                }
                double[] ymat = new double[points];
                for (int i = 0; i < points; i++){
                    ymat[i] = ymin + i*(ymax - ymin)/points;
                }
                float[,] percvalues = CalcExcludedPercentage(values);
                double[] dvals = new double[xvals.Length];
                double[] pvals = new double[xvals.Length];
                for (int i = 0; i < dvals.Length; i++){
                    double xx = xvals[i];
                    double yy = yvals[i];
                    if (!double.IsNaN(xx) && !double.IsNaN(yy)){
                        int xind = ArrayUtils.ClosestIndex(xmat, xx);
                        int yind = ArrayUtils.ClosestIndex(ymat, yy);
                        dvals[i] = values[xind, yind];
                        pvals[i] = percvalues[xind, yind];
                    } else{
                        dvals[i] = double.NaN;
                        pvals[i] = double.NaN;
                    }
                }
                string xname = GetColumnName(mdata, colIndx[k]);
                string yname = GetColumnName(mdata, colIndy[k]);
                mdata.AddNumericColumn("Density_" + xname + "_" + yname,
                    "Density of data points in the plane spanned by the columns " + xname + " and " + yname + ".", dvals);
                mdata.AddNumericColumn("Excluded fraction_" + xname + "_" + yname,
                    "Percentage of points with a point density smaller than at this point in the plane spanned by the columns " + xname +
                        " and " + yname + ".", pvals);
            }
        }
コード例 #18
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int[] rcols = param.GetMultiChoiceParam("Ratio columns").Value;
            int[] icols = param.GetMultiChoiceParam("Intensity columns").Value;
            if (rcols.Length == 0){
                processInfo.ErrString = "Please specify some ratio columns.";
                return;
            }
            if (rcols.Length != icols.Length){
                processInfo.ErrString = "The number of ratio and intensity columns have to be equal.";
                return;
            }
            int truncIndex = param.GetSingleChoiceParam("Use for truncation").Value;
            TestTruncation truncation = truncIndex == 0
                ? TestTruncation.Pvalue : (truncIndex == 1 ? TestTruncation.BenjaminiHochberg : TestTruncation.PermutationBased);
            double threshold = param.GetDoubleParam("Threshold value").Value;
            int sideInd = param.GetSingleChoiceParam("Side").Value;
            TestSide side;
            switch (sideInd){
                case 0:
                    side = TestSide.Both;
                    break;
                case 1:
                    side = TestSide.Left;
                    break;
                case 2:
                    side = TestSide.Right;
                    break;
                default:
                    throw new Exception("Never get here.");
            }
            for (int i = 0; i < rcols.Length; i++){
                float[] r = mdata.GetExpressionColumn(rcols[i]);
                float[] intens = icols[i] < mdata.ExpressionColumnCount
                    ? mdata.GetExpressionColumn(icols[i])
                    : ArrayUtils.ToFloats(mdata.NumericColumns[icols[i] - mdata.ExpressionColumnCount]);
                double[] pvals = CalcSignificanceB(r, intens, side);
                string[][] fdr;
                switch (truncation){
                    case TestTruncation.Pvalue:
                        fdr = PerseusPluginUtils.CalcPvalueSignificance(pvals, threshold);
                        break;
                    case TestTruncation.BenjaminiHochberg:
                        fdr = PerseusPluginUtils.CalcBenjaminiHochbergFdr(pvals, threshold);
                        break;
                    default:
                        throw new Exception("Never get here.");
                }
                mdata.AddNumericColumn(mdata.ExpressionColumnNames[rcols[i]] + " Significance B", "", pvals);
                mdata.AddCategoryColumn(mdata.ExpressionColumnNames[rcols[i]] + " B significant", "", fdr);
            }
        }
コード例 #19
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     SingleChoiceParam access = param.GetSingleChoiceParam("Matrix access");
     bool rows = access.Value == 0;
     UnitVectors(rows, mdata);
 }
コード例 #20
0
 private static void ProcessDataDelete(IMatrixData mdata, Parameters param)
 {
     int groupColInd = param.GetSingleChoiceParam("Category row").Value;
     mdata.RemoveCategoryRowAt(groupColInd);
 }
コード例 #21
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int[] cols = param.GetMultiChoiceParam("Columns").Value;
            int truncIndex = param.GetSingleChoiceParam("Use for truncation").Value;
            TestTruncation truncation = truncIndex == 0
                ? TestTruncation.Pvalue : (truncIndex == 1 ? TestTruncation.BenjaminiHochberg : TestTruncation.PermutationBased);
            double threshold = param.GetDoubleParam("Threshold value").Value;
            int sideInd = param.GetSingleChoiceParam("Side").Value;
            TestSide side;
            switch (sideInd){
                case 0:
                    side = TestSide.Both;
                    break;
                case 1:
                    side = TestSide.Left;
                    break;
                case 2:
                    side = TestSide.Right;
                    break;
                default:
                    throw new Exception("Never get here.");
            }
            foreach (int col in cols){
                float[] r = mdata.GetExpressionColumn(col);
                double[] pvals = CalcSignificanceA(r, side);
                string[][] fdr;
                switch (truncation){
                    case TestTruncation.Pvalue:
                        fdr = PerseusPluginUtils.CalcPvalueSignificance(pvals, threshold);
                        break;
                    case TestTruncation.BenjaminiHochberg:
                        fdr = PerseusPluginUtils.CalcBenjaminiHochbergFdr(pvals, threshold);
                        break;
                    default:
                        throw new Exception("Never get here.");
                }
                mdata.AddNumericColumn(mdata.ExpressionColumnNames[col] + " Significance A", "", pvals);
                mdata.AddCategoryColumn(mdata.ExpressionColumnNames[col] + " A significant", "", fdr);
            }
        }
コード例 #22
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            if (mdata.CategoryColumnCount < 2){
                processInfo.ErrString = "There are less than two categorical columns available.";
                return;
            }
            int colInd1 = param.GetSingleChoiceParam("First column").Value;
            int colInd2 = param.GetSingleChoiceParam("Second column").Value;
            string[][] col1 = mdata.GetCategoryColumnAt(colInd1);
            string[][] col2 = mdata.GetCategoryColumnAt(colInd2);
            string[][] result = new string[col1.Length][];
            for (int i = 0; i < result.Length; i++){
                result[i] = CombineTerms(col1[i], col2[i]);
            }
            string colName = mdata.CategoryColumnNames[colInd1] + "_" + mdata.CategoryColumnNames[colInd2];
            mdata.AddCategoryColumn(colName, "", result);
        }
コード例 #23
0
 private static void ProcessDataDelete(IMatrixData mdata, Parameters param)
 {
     int groupColInd = param.GetSingleChoiceParam("Numerical row").Value;
     mdata.NumericRows.RemoveAt(groupColInd);
     mdata.NumericRowNames.RemoveAt(groupColInd);
     mdata.NumericRowDescriptions.RemoveAt(groupColInd);
 }
コード例 #24
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int colInd = param.GetSingleChoiceParam("Column").Value;
            string searchString = param.GetStringParam("Search string").Value;
            if (string.IsNullOrEmpty(searchString)){
                processInfo.ErrString = "Please provide a search string";
                return;
            }
            bool remove = param.GetSingleChoiceParam("Mode").Value == 0;
            bool matchCase = param.GetBoolParam("Match case").Value;
            bool matchWholeWord = param.GetBoolParam("Match whole word").Value;
            string[] vals = mdata.StringColumns[colInd];
            List<int> valids = new List<int>();
            for (int i = 0; i < vals.Length; i++){
                bool matches = Matches(vals[i], searchString, matchCase, matchWholeWord);
                if (matches && !remove){
                    valids.Add(i);
                } else if (!matches && remove){
                    valids.Add(i);
                }
            }
            PerseusPluginUtils.FilterRows(mdata, param, valids.ToArray());
        }
コード例 #25
0
ファイル: Subtract.cs プロジェクト: neuhauser/perseus-plugins
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            SingleChoiceWithSubParams access = param.GetSingleChoiceWithSubParams("Matrix access");
            bool rows = access.Value == 0;
            int groupInd;
            if (rows){
                groupInd = access.GetSubParameters().GetSingleChoiceParam("Grouping").Value - 1;
            } else{
                groupInd = -1;
            }
            int what = param.GetSingleChoiceParam("Subtract what").Value;
            if (groupInd < 0){
                SubtractValues(rows, GetFunc(what), mdata, processInfo.NumThreads);
            } else{
                string[][] catRow = mdata.GetCategoryRowAt(groupInd);
                foreach (string[] t in catRow){
                    if (t.Length > 1){
                        processInfo.ErrString = "The groups are overlapping.";
                        return;
                    }
                }
                SubtractGroups(mdata, catRow, GetFunc(what));
            }
        }
コード例 #26
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int[] outputColumns = param.GetMultiChoiceParam("Output").Value;
            int proteinIdColumnInd = param.GetSingleChoiceParam("Protein IDs").Value;
            string[] proteinIds = mdata.StringColumns[proteinIdColumnInd];
            int[] intensityCols = param.GetMultiChoiceParam("Intensities").Value;
            if (intensityCols.Length == 0){
                processInfo.ErrString = "Please select at least one column containing protein intensities.";
                return;
            }
            // variable to hold all intensity values
            List<double[]> columns = new List<double[]>();
            string[] sampleNames = new string[intensityCols.Length];
            for (int col = 0; col < intensityCols.Length; col++){
                double[] values;
                if (intensityCols[col] < mdata.ExpressionColumnCount){
                    values = ArrayUtils.ToDoubles(mdata.GetExpressionColumn(intensityCols[col]));
                    sampleNames[col] = mdata.ExpressionColumnNames[intensityCols[col]];
                } else{
                    values = mdata.NumericColumns[intensityCols[col] - mdata.ExpressionColumnCount];
                    sampleNames[col] = mdata.NumericColumnNames[intensityCols[col] - mdata.ExpressionColumnCount];
                }
                sampleNames[col] = new Regex(@"^(?:(?:LFQ )?[Ii]ntensity )?(.*)$").Match(sampleNames[col]).Groups[1].Value;
                columns.Add(values);
            }
            // average over columns if this option is selected
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 3){
                double[] column = new double[mdata.RowCount];
                for (int row = 0; row < mdata.RowCount; row++){
                    double[] values = new double[intensityCols.Length];
                    for (int col = 0; col < intensityCols.Length; col++){
                        values[col] = columns[col][row];
                    }
                    column[row] = ArrayUtils.Median(ExtractValidValues(values, false));
                }
                // delete the original list of columns
                columns = new List<double[]>{column};
                sampleNames = new[]{""};
            }
            // revert logarithm if necessary
            if (param.GetBoolWithSubParams("Logarithmized").Value){
                double[] logBases = new[]{2, Math.E, 10};
                double logBase =
                    logBases[param.GetBoolWithSubParams("Logarithmized").GetSubParameters().GetSingleChoiceParam("log base").Value];
                foreach (double[] t in columns){
                    for (int row = 0; row < mdata.RowCount; row++){
                        if (t[row] == 0){
                            processInfo.ErrString = "Are the columns really logarithmized?\nThey contain zeroes!";
                        }
                        t[row] = Math.Pow(logBase, t[row]);
                    }
                }
            }
            double[] mw = mdata.NumericColumns[param.GetSingleChoiceParam("Molecular masses").Value];
            // detect whether the molecular masses are given in Da or kDa
            if (ArrayUtils.Median(mw) < 250) // likely kDa
            {
                for (int i = 0; i < mw.Length; i++){
                    mw[i] *= 1000;
                }
            }
            double[] detectabilityNormFactor = mw;
            if (param.GetBoolWithSubParams("Detectability correction").Value){
                detectabilityNormFactor =
                    mdata.NumericColumns[
                        param.GetBoolWithSubParams("Detectability correction")
                             .GetSubParameters()
                             .GetSingleChoiceParam("Correction factor")
                             .Value];
            }
            // the normalization factor needs to be nonzero for all proteins
            // check and replace with 1 for all relevant cases
            for (int row = 0; row < mdata.RowCount; row++){
                if (detectabilityNormFactor[row] == 0 || detectabilityNormFactor[row] == double.NaN){
                    detectabilityNormFactor[row] = 1;
                }
            }
            // detect the organism
            Organism organism = DetectOrganism(proteinIds);
            // c value the amount of DNA per cell, see: http://en.wikipedia.org/wiki/C-value
            double cValue = (organism.genomeSize*basePairWeight)/avogadro;
            // find the histones
            int[] histoneRows = FindHistones(proteinIds, organism);
            // write a categorical column indicating the histones
            string[][] histoneCol = new string[mdata.RowCount][];
            for (int row = 0; row < mdata.RowCount; row++){
                histoneCol[row] = (ArrayUtils.Contains(histoneRows, row)) ? new[]{"+"} : new[]{""};
            }
            mdata.AddCategoryColumn("Histones", "", histoneCol);
            // initialize the variables for the annotation rows
            double[] totalProteinRow = new double[mdata.ExpressionColumnCount];
            double[] totalMoleculesRow = new double[mdata.ExpressionColumnCount];
            string[][] organismRow = new string[mdata.ExpressionColumnCount][];
            double[] histoneMassRow = new double[mdata.ExpressionColumnCount];
            double[] ploidyRow = new double[mdata.ExpressionColumnCount];
            double[] cellVolumeRow = new double[mdata.ExpressionColumnCount];
            double[] normalizationFactors = new double[columns.Count];
            // calculate normalization factors for each column
            for (int col = 0; col < columns.Count; col++){
                string sampleName = sampleNames[col];
                double[] column = columns[col];
                // normalization factor to go from intensities to copies,
                // needs to be determined either using the total protein or the histone scaling approach
                double factor;
                switch (param.GetSingleChoiceWithSubParams("Scaling mode").Value){
                    case 0: // total protein amount
                        double mwWeightedNormalizedSummedIntensities = 0;
                        for (int row = 0; row < mdata.RowCount; row++){
                            if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                                mwWeightedNormalizedSummedIntensities += (column[row]/detectabilityNormFactor[row])*mw[row];
                            }
                        }
                        factor =
                            (param.GetSingleChoiceWithSubParams("Scaling mode")
                                  .GetSubParameters()
                                  .GetDoubleParam("Protein amount per cell [pg]")
                                  .Value*1e-12*avogadro)/mwWeightedNormalizedSummedIntensities;
                        break;
                    case 1: // histone mode
                        double mwWeightedNormalizedSummedHistoneIntensities = 0;
                        foreach (int row in histoneRows){
                            if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                                mwWeightedNormalizedSummedHistoneIntensities += (column[row]/detectabilityNormFactor[row])*mw[row];
                            }
                        }
                        double ploidy =
                            param.GetSingleChoiceWithSubParams("Scaling mode").GetSubParameters().GetDoubleParam("Ploidy").Value;
                        factor = (cValue*ploidy*avogadro)/mwWeightedNormalizedSummedHistoneIntensities;
                        break;
                    default:
                        factor = 1;
                        break;
                }
                normalizationFactors[col] = factor;
            }
            // check averaging mode
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 1) // same factor for all
            {
                double factor = ArrayUtils.Mean(normalizationFactors);
                for (int i = 0; i < normalizationFactors.Length; i++){
                    normalizationFactors[i] = factor;
                }
            }
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 2) // same factor in each group
            {
                if (
                    param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value ==
                        -1){
                    processInfo.ErrString = "No grouping selected.";
                    return;
                }
                string[][] groupNames =
                    mdata.GetCategoryRowAt(
                        param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value);
                string[] uniqueGroupNames = Unique(groupNames);
                int[] grouping = new int[columns.Count];
                for (int i = 0; i < columns.Count; i++){
                    if (intensityCols[i] >= mdata.ExpressionColumnCount){ // Numeric annotation columns cannot be grouped
                        grouping[i] = i;
                        continue;
                    }
                    if (ArrayUtils.Contains(uniqueGroupNames, groupNames[i][0])){
                        grouping[i] = ArrayUtils.IndexOf(uniqueGroupNames, groupNames[i][0]);
                        continue;
                    }
                    grouping[i] = i;
                }
                Dictionary<int, List<double>> factors = new Dictionary<int, List<double>>();
                for (int i = 0; i < columns.Count; i++){
                    if (factors.ContainsKey(grouping[i])){
                        factors[grouping[i]].Add(normalizationFactors[i]);
                    } else{
                        factors.Add(grouping[i], new List<double>{normalizationFactors[i]});
                    }
                }
                double[] averagedNormalizationFactors = new double[columns.Count];
                for (int i = 0; i < columns.Count; i++){
                    List<double> factor;
                    factors.TryGetValue(grouping[i], out factor);
                    averagedNormalizationFactors[i] = ArrayUtils.Mean(factor);
                }
                normalizationFactors = averagedNormalizationFactors;
            }
            // loop over all selected columns and calculate copy numbers
            for (int col = 0; col < columns.Count; col++){
                string sampleName = sampleNames[col];
                double[] column = columns[col];
                double factor = normalizationFactors[col];
                double[] copyNumbers = new double[mdata.RowCount];
                double[] concentrations = new double[mdata.RowCount]; // femtoliters
                double[] massFraction = new double[mdata.RowCount];
                double[] moleFraction = new double[mdata.RowCount];
                double totalProtein = 0; // picograms
                double histoneMass = 0; // picograms
                double totalMolecules = 0;
                for (int row = 0; row < mdata.RowCount; row++){
                    if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                        copyNumbers[row] = (column[row]/detectabilityNormFactor[row])*factor;
                        totalMolecules += copyNumbers[row];
                        totalProtein += (copyNumbers[row]*mw[row]*1e12)/avogadro; // picograms
                        if (ArrayUtils.Contains(histoneRows, row)){
                            histoneMass += (copyNumbers[row]*mw[row]*1e12)/avogadro; // picograms
                        }
                    }
                }
                double totalVolume = (totalProtein/(param.GetDoubleParam("Total cellular protein concentration [g/l]").Value))*1000;
                // femtoliters
                for (int row = 0; row < mdata.RowCount; row++){
                    if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
                        concentrations[row] = ((copyNumbers[row]/(totalVolume*1e-15))/avogadro)*1e9; // nanomolar
                        massFraction[row] = (((copyNumbers[row]*mw[row]*1e12)/avogadro)/totalProtein)*1e6; // ppm
                        moleFraction[row] = (copyNumbers[row]/totalMolecules)*1e6; // ppm
                    }
                }
                string suffix = (sampleName == "") ? "" : " " + sampleName;
                if (ArrayUtils.Contains(outputColumns, 0)){
                    mdata.AddNumericColumn("Copy number" + suffix, "", copyNumbers);
                }
                if (ArrayUtils.Contains(outputColumns, 1)){
                    mdata.AddNumericColumn("Concentration [nM]" + suffix, "", concentrations);
                }
                if (ArrayUtils.Contains(outputColumns, 2)){
                    mdata.AddNumericColumn("Abundance (mass/total mass) [*10^-6]" + suffix, "", massFraction);
                }
                if (ArrayUtils.Contains(outputColumns, 3)){
                    mdata.AddNumericColumn("Abundance (molecules/total molecules) [*10^-6]" + suffix, "", moleFraction);
                }
                double[] rank = ArrayUtils.Rank(copyNumbers);
                double[] relativeRank = new double[mdata.RowCount];
                double validRanks = mdata.RowCount;
                for (int row = 0; row < mdata.RowCount; row++){
                    // remove rank for protein with no copy number information
                    if (double.IsNaN((copyNumbers[row])) || copyNumbers[row] == 0){
                        rank[row] = double.NaN;
                        validRanks--; // do not consider as valid
                    }
                    // invert ranking, so that rank 0 is the most abundant protein
                    rank[row] = mdata.RowCount - rank[row];
                }
                for (int row = 0; row < mdata.RowCount; row++){
                    relativeRank[row] = rank[row]/validRanks;
                }
                if (ArrayUtils.Contains(outputColumns, 4)){
                    mdata.AddNumericColumn("Copy number rank" + suffix, "", rank);
                }
                if (ArrayUtils.Contains(outputColumns, 5)){
                    mdata.AddNumericColumn("Relative copy number rank" + suffix, "", relativeRank);
                }
                if (intensityCols[col] < mdata.ExpressionColumnCount &&
                    param.GetSingleChoiceWithSubParams("Averaging mode").Value != 3){
                    totalProteinRow[intensityCols[col]] = Math.Round(totalProtein, 2);
                    totalMoleculesRow[intensityCols[col]] = Math.Round(totalMolecules, 0);
                    organismRow[intensityCols[col]] = new string[]{organism.name};
                    histoneMassRow[intensityCols[col]] = Math.Round(histoneMass, 4);
                    ploidyRow[intensityCols[col]] = Math.Round((histoneMass*1e-12)/cValue, 2);
                    cellVolumeRow[intensityCols[col]] = Math.Round(totalVolume, 2); // femtoliters
                }
            }
            if (param.GetSingleChoiceWithSubParams("Averaging mode").Value != 3 && ArrayUtils.Contains(outputColumns, 6)){
                mdata.AddNumericRow("Total protein [pg/cell]", "", totalProteinRow);
                mdata.AddNumericRow("Total molecules per cell", "", totalMoleculesRow);
                mdata.AddCategoryRow("Organism", "", organismRow);
                mdata.AddNumericRow("Histone mass [pg/cell]", "", histoneMassRow);
                mdata.AddNumericRow("Ploidy", "", ploidyRow);
                mdata.AddNumericRow("Cell volume [fl]", "", cellVolumeRow);
            }
        }
コード例 #27
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     bool rows = param.GetSingleChoiceParam("Matrix access").Value == 0;
     double min = param.GetDoubleParam("Minimum").Value;
     double max = param.GetDoubleParam("Maximum").Value;
     MapToInterval1(rows, mdata, min, max);
 }
コード例 #28
0
 public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables, ProcessInfo processInfo)
 {
     int colInd = param.GetSingleChoiceParam("Column").Value;
     double value = param.GetDoubleParam("Value").Value;
     int ruleInd = param.GetSingleChoiceParam("Remove if").Value;
     bool keepNan = param.GetBoolParam("Keep NaN").Value;
     double[] vals = colInd < mdata.NumericColumnCount
         ? mdata.NumericColumns[colInd] : ArrayUtils.ToDoubles(mdata.GetExpressionColumn(colInd - mdata.NumericColumnCount));
     List<int> valids = new List<int>();
     for (int i = 0; i < vals.Length; i++){
         bool valid;
         double val = vals[i];
         if (double.IsNaN(val)){
             valid = keepNan;
         } else{
             switch (ruleInd){
                 case 0:
                     valid = val > value;
                     break;
                 case 1:
                     valid = val >= value;
                     break;
                 case 2:
                     valid = val != value;
                     break;
                 case 3:
                     valid = val == value;
                     break;
                 case 4:
                     valid = val <= value;
                     break;
                 case 5:
                     valid = val < value;
                     break;
                 default:
                     throw new Exception("Never get here.");
             }
         }
         if (valid){
             valids.Add(i);
         }
     }
     PerseusPluginUtils.FilterRows(mdata, param, valids.ToArray());
 }
コード例 #29
0
        public IMatrixData CombineData(IMatrixData matrixData1, IMatrixData matrixData2, Parameters parameters,
			ProcessInfo processInfo)
        {
            bool indicator = parameters.GetBoolParam("Indicator").Value;
            int otherCol = parameters.GetSingleChoiceParam("Matching column 2").Value;
            Average avExpression = GetAveraging(parameters.GetSingleChoiceParam("Combine expression values").Value);
            Average avNumerical = GetAveraging(parameters.GetSingleChoiceParam("Combine numerical values").Value);
            string[] q = matrixData2.StringColumns[otherCol];
            string[][] w = new string[q.Length][];
            for (int i = 0; i < q.Length; i++){
                string r = q[i].Trim();
                w[i] = r.Length == 0 ? new string[0] : r.Split(';');
                w[i] = ArrayUtils.UniqueValues(w[i]);
            }
            Dictionary<string, List<int>> id2Cols = new Dictionary<string, List<int>>();
            for (int i = 0; i < w.Length; i++){
                foreach (string s in w[i]){
                    if (!id2Cols.ContainsKey(s)){
                        id2Cols.Add(s, new List<int>());
                    }
                    id2Cols[s].Add(i);
                }
            }
            int pgCol = parameters.GetSingleChoiceParam("Matching column 1").Value;
            string[] d = matrixData1.StringColumns[pgCol];
            string[][] x = new string[d.Length][];
            for (int i = 0; i < d.Length; i++){
                string r = d[i].Trim();
                x[i] = r.Length == 0 ? new string[0] : r.Split(';');
                x[i] = ArrayUtils.UniqueValues(x[i]);
            }
            int[][] indexMap = new int[x.Length][];
            string[][] indicatorCol = new string[x.Length][];
            for (int i = 0; i < indexMap.Length; i++){
                List<int> qwer = new List<int>();
                foreach (string s in x[i]){
                    if (id2Cols.ContainsKey(s)){
                        List<int> en = id2Cols[s];
                        qwer.AddRange(en);
                    }
                }
                indexMap[i] = qwer.ToArray();
                indexMap[i] = ArrayUtils.UniqueValues(indexMap[i]);
                indicatorCol[i] = indexMap[i].Length > 0 ? new[]{"+"} : new string[0];
            }
            IMatrixData result = matrixData1.Copy();
            SetAnnotationRows(result, matrixData1, matrixData2);
            if (indicator){
                result.AddCategoryColumn(matrixData2.Name, "", indicatorCol);
            }
                {
                    int[] exCols = parameters.GetMultiChoiceParam("Expression columns").Value;
                    float[,] newExColumns = new float[matrixData1.RowCount, exCols.Length];
                    float[,] newQuality = new float[matrixData1.RowCount, exCols.Length];
                    bool[,] newIsImputed = new bool[matrixData1.RowCount, exCols.Length];
                    string[] newExColNames = new string[exCols.Length];
                    float[,] oldEx = matrixData2.ExpressionValues;
                    float[,] oldQual = matrixData2.QualityValues;
                    bool[,] oldImp = matrixData2.IsImputed;
                    for (int i = 0; i < exCols.Length; i++) {
                        newExColNames[i] = matrixData2.ExpressionColumnNames[exCols[i]];
                        for (int j = 0; j < matrixData1.RowCount; j++){
                            int[] inds = indexMap[j];
                            List<double> values = new List<double>();
                            List<double> qual = new List<double>();
                            List<bool> imp = new List<bool>();
                            foreach (int ind in inds) {
                                double v = oldEx[ind, exCols[i]];
                                if (!double.IsNaN(v) && !double.IsInfinity(v)){
                                    values.Add(v);
                                    double qx = oldQual[ind, exCols[i]];
                                    if (!double.IsNaN(qx) && !double.IsInfinity(qx)){
                                        qual.Add(qx);
                                    }
                                    bool isi = oldImp[ind, exCols[i]];
                                    imp.Add(isi);
                                }
                            }
                            newExColumns[j, i] = values.Count == 0 ? float.NaN : (float)avExpression(values.ToArray());
                            newQuality[j, i] = qual.Count == 0 ? float.NaN : (float)avExpression(qual.ToArray());
                            newIsImputed[j, i] = imp.Count != 0 && AvImp(imp.ToArray());
                        }
                    }
                    MakeNewNames(newExColNames, result.ExpressionColumnNames);
                    AddExpressionColumns(result, newExColNames, newExColumns, newQuality, newIsImputed);
                }
                {
                    int[] numCols = parameters.GetMultiChoiceParam("Numerical columns").Value;
                    double[][] newNumericalColumns = new double[numCols.Length][];
                    string[] newNumColNames = new string[numCols.Length];
                    for (int i = 0; i < numCols.Length; i++){
                        double[] oldCol = matrixData2.NumericColumns[numCols[i]];
                        newNumColNames[i] = matrixData2.NumericColumnNames[numCols[i]];
                        newNumericalColumns[i] = new double[matrixData1.RowCount];
                        for (int j = 0; j < matrixData1.RowCount; j++){
                            int[] inds = indexMap[j];
                            List<double> values = new List<double>();
                            foreach (int ind in inds){
                                double v = oldCol[ind];
                                if (!double.IsNaN(v)){
                                    values.Add(v);
                                }
                            }
                            newNumericalColumns[i][j] = values.Count == 0 ? double.NaN : avNumerical(values.ToArray());
                        }
                    }
                    for (int i = 0; i < numCols.Length; i++){
                        result.AddNumericColumn(newNumColNames[i], "", newNumericalColumns[i]);
                    }
                }
                {
                    int[] catCols = parameters.GetMultiChoiceParam("Categorical columns").Value;
                    string[][][] newCatColumns = new string[catCols.Length][][];
                    string[] newCatColNames = new string[catCols.Length];
                    for (int i = 0; i < catCols.Length; i++){
                        string[][] oldCol = matrixData2.CategoryColumns[catCols[i]];
                        newCatColNames[i] = matrixData2.CategoryColumnNames[catCols[i]];
                        newCatColumns[i] = new string[matrixData1.RowCount][];
                        for (int j = 0; j < matrixData1.RowCount; j++){
                            int[] inds = indexMap[j];
                            List<string[]> values = new List<string[]>();
                            foreach (int ind in inds){
                                string[] v = oldCol[ind];
                                if (v.Length > 0){
                                    values.Add(v);
                                }
                            }
                            newCatColumns[i][j] = values.Count == 0
                                ? new string[0] : ArrayUtils.UniqueValues(ArrayUtils.Concat(values.ToArray()));
                        }
                    }
                    for (int i = 0; i < catCols.Length; i++){
                        result.AddCategoryColumn(newCatColNames[i], "", newCatColumns[i]);
                    }
                }
                {
                    int[] stringCols = parameters.GetMultiChoiceParam("String columns").Value;
                    string[][] newStringColumns = new string[stringCols.Length][];
                    string[] newStringColNames = new string[stringCols.Length];
                    for (int i = 0; i < stringCols.Length; i++){
                        string[] oldCol = matrixData2.StringColumns[stringCols[i]];
                        newStringColNames[i] = matrixData2.StringColumnNames[stringCols[i]];
                        newStringColumns[i] = new string[matrixData1.RowCount];
                        for (int j = 0; j < matrixData1.RowCount; j++){
                            int[] inds = indexMap[j];
                            List<string> values = new List<string>();
                            foreach (int ind in inds){
                                string v = oldCol[ind];
                                if (v.Length > 0){
                                    values.Add(v);
                                }
                            }
                            newStringColumns[i][j] = values.Count == 0 ? "" : StringUtils.Concat(";", values.ToArray());
                        }
                    }
                    for (int i = 0; i < stringCols.Length; i++){
                        result.AddStringColumn(newStringColNames[i], "", newStringColumns[i]);
                    }
                }
            result.Origin = "Combination";
            return result;
        }
コード例 #30
0
        public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
			ref IDocumentData[] documents, ProcessInfo processInfo)
        {
            int minCount = param.GetIntParam("Min. count").Value;
            int selCol = param.GetSingleChoiceParam("Selection").Value;
            string value = param.GetStringParam("Value").Value;
            int[] catIndices = param.GetMultiChoiceParam("Categories").Value;
            bool[] selection = null;
            if (selCol < mdata.CategoryColumnCount){
                selection = new bool[mdata.RowCount];
                string[][] x = mdata.GetCategoryColumnAt(selCol);
                for (int i = 0; i < selection.Length; i++){
                    if (x[i] != null){
                        for (int j = 0; j < x[i].Length; j++){
                            if (x[i][j].Equals(value)){
                                selection[i] = true;
                                break;
                            }
                        }
                    }
                }
            }
            CountingResult result = CountCategories(mdata, selection, selCol, catIndices);
            CreateMatrixData(result, mdata, minCount, selection);
        }