public void Experiment3() { Range range = new Range(-5, 5); double[][] testPoints = generateRandom2DPoints(range, RANDOM_POINTS_COUNT); IFunction function = FunctionsHelper.GetConcreteFunction(FunNumber.F3); NeuroBackPropagation backPropagation = new NeuroBackPropagation(generateRandom2DPoints(range, RANDOM_POINTS_COUNT), function); WriteResults(function, backPropagation, testPoints, "Function3"); }
public void testOneDimensionalFunction(IFunction function, Range range, String filename) { NeuroBackPropagation backPropagation = new NeuroBackPropagation(to2DArray(generateRandomPoints(range, RANDOM_POINTS_COUNT)), function); double[][] testPoints = to2DArray(generateRandomPoints(range, RANDOM_POINTS_COUNT)); WriteResults(function, backPropagation, testPoints, filename); }
private void WriteResults(IFunction function, NeuroBackPropagation backPropagation, double[][] testPoints, String filename) { StringBuilder expected = new StringBuilder(); StringBuilder result = new StringBuilder(); foreach (double[] xs in testPoints) { double output = backPropagation.getOutput(xs); // Console.WriteLine(String.format("f(" + Arrays.toString(xs) + ") = %.2f, expected %.2f", output, function.evaluate(xs))); expected.Append(StringUtils.Join(xs, " ") + " " + output + "\n"); result.Append(StringUtils.Join(xs, " ") + " " + function.evaluate(xs) + "\n"); } // Save results to files. FileManagement.WriteToFile(outputDirectory + "//neuro_" + filename + "_expected.dat", expected.ToString()); FileManagement.WriteToFile(outputDirectory + "//neuro_" + filename + "_result.dat", result.ToString()); // Print Error message. double error = backPropagation.getError(testPoints); Console.WriteLine("Error = " + error); }