public static void Test01e_2() { var X = new DoubleMatrix(new double[, ] { { 73, 746, 743, 106 }, { 584, 531, 420, 579 }, { 255, 562, 234, 693 }, { 360, 474, 381, 484 }, { 301, 78, 68, 313 } }); var y = new DoubleMatrix(new double[, ] { { 803 }, { 292 }, { 230 }, { 469 }, { 655 } }); var XtX = X.GetTranspose() * X; var Xty = X.GetTranspose() * y; var solver = new DoubleLUDecomp(XtX); var expected = solver.Solve(Xty); FastNonnegativeLeastSquares.Execution(XtX, Xty, (i) => false, null, out var x, out var w); Assert.AreEqual(expected[0, 0], x[0, 0], 1e-4); Assert.AreEqual(expected[1, 0], x[1, 0], 1e-4); Assert.AreEqual(expected[2, 0], x[2, 0], 1e-4); Assert.AreEqual(expected[3, 0], x[3, 0], 1e-4); Assert.AreEqual(0, w[0, 0], 1e-8); Assert.AreEqual(0, w[1, 0], 1e-8); Assert.AreEqual(0, w[2, 0], 1e-8); Assert.AreEqual(0, w[3, 0], 1e-8); }
/// <summary> /// Execution of the fast nonnegative least squares algorithm. The algorithm finds a vector x with all elements xi>=0 which minimizes |X*x-y|. /// </summary> /// <param name="XtX">X transposed multiplied by X, thus a square matrix.</param> /// <param name="Xty">X transposed multiplied by Y, thus a matrix with one column and same number of rows as X.</param> /// <param name="isRestrictedToPositiveValues">Function that takes the parameter index as argument and returns true if the parameter at this index is restricted to positive values; otherwise the return value must be false.</param> /// <param name="tolerance">Used to decide if a solution element is less than or equal to zero. If this is null, a default tolerance of tolerance = MAX(SIZE(XtX)) * NORM(XtX,1) * EPS is used.</param> /// <param name="x">Output: solution vector (matrix with one column and number of rows according to dimension of X.</param> /// <param name="w">Output: Lagrange vector. Elements which take place in the fit are set to 0. Elements fixed to zero contain a negative number.</param> /// <remarks> /// <para> /// Literature: Rasmus Bro and Sijmen De Jong, 'A fast non-negativity-constrained least squares algorithm', Journal of Chemometrics, Vol. 11, 393-401 (1997) /// </para> /// <para> /// Algorithm modified by Dirk Lellinger 2015 to allow a mixture of restricted and unrestricted parameters. /// </para> /// </remarks> public static void Execution(IROMatrix <double> XtX, IROMatrix <double> Xty, Func <int, bool> isRestrictedToPositiveValues, double?tolerance, out IMatrix <double> x, out IMatrix <double> w) { if (null == XtX) { throw new ArgumentNullException(nameof(XtX)); } if (null == Xty) { throw new ArgumentNullException(nameof(Xty)); } if (null == isRestrictedToPositiveValues) { throw new ArgumentNullException(nameof(isRestrictedToPositiveValues)); } if (XtX.RowCount != XtX.ColumnCount) { throw new ArgumentException("Matrix should be a square matrix", nameof(XtX)); } if (Xty.ColumnCount != 1) { throw new ArgumentException(nameof(Xty) + " should be a column vector (number of columns should be equal to 1)", nameof(Xty)); } if (Xty.RowCount != XtX.ColumnCount) { throw new ArgumentException("Number of rows in " + nameof(Xty) + " should match number of columns in " + nameof(XtX), nameof(Xty)); } var matrixGenerator = new Func <int, int, DoubleMatrix>((rows, cols) => new DoubleMatrix(rows, cols)); // if nargin < 3 // tol = 10 * eps * norm(XtX, 1) * length(XtX); // end double tol = tolerance.HasValue ? tolerance.Value : 10 * DoubleConstants.DBL_EPSILON * MatrixMath.Norm(XtX, MatrixNorm.M1Norm) * Math.Max(XtX.RowCount, XtX.ColumnCount); // [m, n] = size(XtX); int n = XtX.ColumnCount; // P = zeros(1, n); // Z = 1:n; var P = new bool[n]; // POSITIVE SET: all indices which are currently not fixed are marked with TRUE (Negative set is simply this, but inverted) bool initializationOfSolutionRequired = false; for (int i = 0; i < n; ++i) { bool isNotRestricted = !isRestrictedToPositiveValues(i); P[i] = isNotRestricted; initializationOfSolutionRequired |= isNotRestricted; } // x = P'; x = matrixGenerator(n, 1); // w = Xty-XtX*x; w = matrixGenerator(n, 1); MatrixMath.Copy(Xty, w); var helper_n_1 = matrixGenerator(n, 1); MatrixMath.Multiply(XtX, x, helper_n_1); MatrixMath.Subtract(w, helper_n_1, w); // set up iteration criterion int iter = 0; int itmax = 30 * n; // outer loop to put variables into set to hold positive coefficients // while any(Z) & any(w(ZZ) > tol) while (initializationOfSolutionRequired || (P.Any(ele => false == ele) && w.Any((r, c, ele) => false == P[r] && ele > tol))) { if (initializationOfSolutionRequired) { initializationOfSolutionRequired = false; } else { // [wt, t] = max(w(ZZ)); // t = ZZ(t); int t = -1; // INDEX double wt = double.NegativeInfinity; for (int i = 0; i < n; ++i) { if (!P[i]) { if (w[i, 0] > wt) { wt = w[i, 0]; t = i; } } } // P(1, t) = t; // Z(t) = 0; P[t] = true; } // z(PP')=(Xty(PP)'/XtX(PP,PP)'); var subXty = Xty.SubMatrix(P, 0, matrixGenerator); // Xty(PP)' var subXtX = XtX.SubMatrix(P, P, matrixGenerator); var solver = new DoubleLUDecomp(subXtX); var subSolution = solver.Solve(subXty); var z = matrixGenerator(n, 1); for (int i = 0, ii = 0; i < n; ++i) { z[i, 0] = P[i] ? subSolution[ii++, 0] : 0; } // C. Inner loop (to remove elements from the positive set which no longer belong to) while (z.Any((r, c, ele) => true == P[r] && ele <= tol && isRestrictedToPositiveValues(r)) && iter < itmax) { ++iter; // QQ = find((z <= tol) & P'); //alpha = min(x(QQ)./ (x(QQ) - z(QQ))); double alpha = double.PositiveInfinity; for (int i = 0; i < n; ++i) { if ((z[i, 0] <= tol && true == P[i] && isRestrictedToPositiveValues(i))) { alpha = Math.Min(alpha, x[i, 0] / (x[i, 0] - z[i, 0])); } } // x = x + alpha * (z - x); for (int i = 0; i < n; ++i) { x[i, 0] += alpha * (z[i, 0] - x[i, 0]); } // ij = find(abs(x) < tol & P' ~= 0); // Z(ij) = ij'; // P(ij) = zeros(1, length(ij)); for (int i = 0; i < n; ++i) { if (Math.Abs(x[i, 0]) < tol && P[i] == true && isRestrictedToPositiveValues(i)) { P[i] = false; } } //PP = find(P); //ZZ = find(Z); //nzz = size(ZZ); //z(PP) = (Xty(PP)'/XtX(PP,PP)'); subXty = Xty.SubMatrix(P, 0, matrixGenerator); subXtX = XtX.SubMatrix(P, P, matrixGenerator); solver = new DoubleLUDecomp(subXtX); subSolution = solver.Solve(subXty); for (int i = 0, ii = 0; i < n; ++i) { z[i, 0] = P[i] ? subSolution[ii++, 0] : 0; } } // end inner loop MatrixMath.Copy(z, x); MatrixMath.Copy(Xty, w); MatrixMath.Multiply(XtX, x, helper_n_1); MatrixMath.Subtract(w, helper_n_1, w); } }