/// <summary> /// Will return the new root (unchanged except in start-up) /// </summary> public static VNode ProcessDataEvent(VDataEvent e, VNode Root, VoronoiGraph VG, double ys, out VDataNode[] CircleCheckList) { if(Root==null) { Root = new VDataNode(e.DataPoint); CircleCheckList = new VDataNode[] {(VDataNode)Root}; return Root; } //1. Find the node to be replaced VNode C = VNode.FindDataNode(Root, ys, e.DataPoint[0]); //2. Create the subtree (ONE Edge, but two VEdgeNodes) VoronoiEdge VE = new VoronoiEdge(); VE.LeftData = ((VDataNode)C).DataPoint; VE.RightData = e.DataPoint; VE.VVertexA = Fortune.VVUnkown; VE.VVertexB = Fortune.VVUnkown; VG.Edges.Add(VE); VNode SubRoot; if(Math.Abs(VE.LeftData[1]-VE.RightData[1])<1e-10) { if(VE.LeftData[0]<VE.RightData[0]) { SubRoot = new VEdgeNode(VE,false); SubRoot.Left = new VDataNode(VE.LeftData); SubRoot.Right = new VDataNode(VE.RightData); } else { SubRoot = new VEdgeNode(VE,true); SubRoot.Left = new VDataNode(VE.RightData); SubRoot.Right = new VDataNode(VE.LeftData); } CircleCheckList = new VDataNode[] {(VDataNode)SubRoot.Left,(VDataNode)SubRoot.Right}; } else { SubRoot = new VEdgeNode(VE,false); SubRoot.Left = new VDataNode(VE.LeftData); SubRoot.Right = new VEdgeNode(VE,true); SubRoot.Right.Left = new VDataNode(VE.RightData); SubRoot.Right.Right = new VDataNode(VE.LeftData); CircleCheckList = new VDataNode[] {(VDataNode)SubRoot.Left,(VDataNode)SubRoot.Right.Left,(VDataNode)SubRoot.Right.Right}; } //3. Apply subtree if(C.Parent == null) return SubRoot; C.Parent.Replace(C,SubRoot); return Root; }
public static VNode ProcessCircleEvent(VCircleEvent e, VNode Root, VoronoiGraph VG, double ys, out VDataNode[] CircleCheckList) { VDataNode a,b,c; VEdgeNode eu,eo; b = e.NodeN; a = VNode.LeftDataNode(b); c = VNode.RightDataNode(b); if(a==null || b.Parent==null || c==null || !a.DataPoint.Equals(e.NodeL.DataPoint) || !c.DataPoint.Equals(e.NodeR.DataPoint)) { CircleCheckList = new VDataNode[]{}; return Root; // Abbruch da sich der Graph verändert hat } eu = (VEdgeNode)b.Parent; CircleCheckList = new VDataNode[] {a,c}; //1. Create the new Vertex Vector VNew = new Vector(e.Center[0],e.Center[1]); // VNew[0] = Fortune.ParabolicCut(a.DataPoint[0],a.DataPoint[1],c.DataPoint[0],c.DataPoint[1],ys); // VNew[1] = (ys + a.DataPoint[1])/2 - 1/(2*(ys-a.DataPoint[1]))*(VNew[0]-a.DataPoint[0])*(VNew[0]-a.DataPoint[0]); VG.Vertices.Add(VNew); //2. Find out if a or c are in a distand part of the tree (the other is then b's sibling) and assign the new vertex if(eu.Left==b) // c is sibling { eo = VNode.EdgeToRightDataNode(a); // replace eu by eu's Right eu.Parent.Replace(eu,eu.Right); } else // a is sibling { eo = VNode.EdgeToRightDataNode(b); // replace eu by eu's Left eu.Parent.Replace(eu,eu.Left); } eu.Edge.AddVertex(VNew); // ///////////////////// uncertain // if(eo==eu) // return Root; // ///////////////////// //complete & cleanup eo eo.Edge.AddVertex(VNew); //while(eo.Edge.VVertexB == Fortune.VVUnkown) //{ // eo.Flipped = !eo.Flipped; // eo.Edge.AddVertex(Fortune.VVInfinite); //} //if(eo.Flipped) //{ // Vector T = eo.Edge.LeftData; // eo.Edge.LeftData = eo.Edge.RightData; // eo.Edge.RightData = T; //} //2. Replace eo by new Edge VoronoiEdge VE = new VoronoiEdge(); VE.LeftData = a.DataPoint; VE.RightData = c.DataPoint; VE.AddVertex(VNew); VG.Edges.Add(VE); VEdgeNode VEN = new VEdgeNode(VE, false); VEN.Left = eo.Left; VEN.Right = eo.Right; if(eo.Parent == null) return VEN; eo.Parent.Replace(eo,VEN); return Root; }
public static VoronoiGraph ComputeVoronoiGraph(IEnumerable Datapoints) { BinaryPriorityQueue PQ = new BinaryPriorityQueue(); Hashtable CurrentCircles = new Hashtable(); VoronoiGraph VG = new VoronoiGraph(); VNode RootNode = null; foreach(Vector V in Datapoints) { PQ.Push(new VDataEvent(V)); } while(PQ.Count>0) { VEvent VE = PQ.Pop() as VEvent; VDataNode[] CircleCheckList; if(VE is VDataEvent) { RootNode = VNode.ProcessDataEvent(VE as VDataEvent,RootNode,VG,VE.Y,out CircleCheckList); } else if(VE is VCircleEvent) { CurrentCircles.Remove(((VCircleEvent)VE).NodeN); if(!((VCircleEvent)VE).Valid) continue; RootNode = VNode.ProcessCircleEvent(VE as VCircleEvent,RootNode,VG,VE.Y,out CircleCheckList); } else throw new Exception("Got event of type "+VE.GetType().ToString()+"!"); foreach(VDataNode VD in CircleCheckList) { if(CurrentCircles.ContainsKey(VD)) { ((VCircleEvent)CurrentCircles[VD]).Valid=false; CurrentCircles.Remove(VD); } VCircleEvent VCE = VNode.CircleCheckDataNode(VD,VE.Y); if(VCE!=null) { PQ.Push(VCE); CurrentCircles[VD]=VCE; } } if(VE is VDataEvent) { Vector DP = ((VDataEvent)VE).DataPoint; foreach(VCircleEvent VCE in CurrentCircles.Values) { if(MathTools.Dist(DP[0],DP[1],VCE.Center[0],VCE.Center[1])<VCE.Y-VCE.Center[1] && Math.Abs(MathTools.Dist(DP[0],DP[1],VCE.Center[0],VCE.Center[1])-(VCE.Y-VCE.Center[1]))>1e-10) VCE.Valid = false; } } } VNode.CleanUpTree(RootNode); foreach(VoronoiEdge VE in VG.Edges) { if(VE.Done) continue; if(VE.VVertexB == Fortune.VVUnkown) { VE.AddVertex(Fortune.VVInfinite); if(Math.Abs(VE.LeftData[1]-VE.RightData[1])<1e-10 && VE.LeftData[0]<VE.RightData[0]) { Vector T = VE.LeftData; VE.LeftData = VE.RightData; VE.RightData = T; } } } ArrayList MinuteEdges = new ArrayList(); foreach(VoronoiEdge VE in VG.Edges) { if(!VE.IsPartlyInfinite && VE.VVertexA.Equals(VE.VVertexB)) { MinuteEdges.Add(VE); // prevent rounding errors from expanding to holes foreach(VoronoiEdge VE2 in VG.Edges) { if(VE2.VVertexA.Equals(VE.VVertexA)) VE2.VVertexA = VE.VVertexA; if(VE2.VVertexB.Equals(VE.VVertexA)) VE2.VVertexB = VE.VVertexA; } } } foreach(VoronoiEdge VE in MinuteEdges) VG.Edges.Remove(VE); return VG; }
public static VoronoiGraph FilterVG(VoronoiGraph VG, double minLeftRightDist) { VoronoiGraph VGErg = new VoronoiGraph(); foreach(VoronoiEdge VE in VG.Edges) { if(Vector.Dist(VE.LeftData,VE.RightData)>=minLeftRightDist) VGErg.Edges.Add(VE); } foreach(VoronoiEdge VE in VGErg.Edges) { VGErg.Vertices.Add(VE.VVertexA); VGErg.Vertices.Add(VE.VVertexB); } return VGErg; }
public static VoronoiGraph ComputeVoronoiGraph(IEnumerable Datapoints) { BinaryPriorityQueue PQ = new BinaryPriorityQueue(); Hashtable CurrentCircles = new Hashtable(); VoronoiGraph VG = new VoronoiGraph(); VNode RootNode = null; foreach (Vector V in Datapoints) { PQ.Push(new VDataEvent(V)); } while (PQ.Count > 0) { VEvent VE = PQ.Pop() as VEvent; VDataNode[] CircleCheckList; if (VE is VDataEvent) { RootNode = VNode.ProcessDataEvent(VE as VDataEvent, RootNode, VG, VE.Y, out CircleCheckList); } else if (VE is VCircleEvent) { CurrentCircles.Remove(((VCircleEvent)VE).NodeN); if (!((VCircleEvent)VE).Valid) { continue; } RootNode = VNode.ProcessCircleEvent(VE as VCircleEvent, RootNode, VG, VE.Y, out CircleCheckList); } else { throw new Exception("Got event of type " + VE.GetType().ToString() + "!"); } foreach (VDataNode VD in CircleCheckList) { if (CurrentCircles.ContainsKey(VD)) { ((VCircleEvent)CurrentCircles[VD]).Valid = false; CurrentCircles.Remove(VD); } VCircleEvent VCE = VNode.CircleCheckDataNode(VD, VE.Y); if (VCE != null) { PQ.Push(VCE); CurrentCircles[VD] = VCE; } } if (VE is VDataEvent) { Vector DP = ((VDataEvent)VE).DataPoint; foreach (VCircleEvent VCE in CurrentCircles.Values) { if (MathTools.Dist(DP[0], DP[1], VCE.Center[0], VCE.Center[1]) < VCE.Y - VCE.Center[1] && Math.Abs(MathTools.Dist(DP[0], DP[1], VCE.Center[0], VCE.Center[1]) - (VCE.Y - VCE.Center[1])) > 1e-10) { VCE.Valid = false; } } } } VNode.CleanUpTree(RootNode); foreach (VoronoiEdge VE in VG.Edges) { if (VE.Done) { continue; } if (VE.VVertexB == Fortune.VVUnkown) { VE.AddVertex(Fortune.VVInfinite); if (Math.Abs(VE.LeftData[1] - VE.RightData[1]) < 1e-10 && VE.LeftData[0] < VE.RightData[0]) { Vector T = VE.LeftData; VE.LeftData = VE.RightData; VE.RightData = T; } } } ArrayList MinuteEdges = new ArrayList(); foreach (VoronoiEdge VE in VG.Edges) { if (!VE.IsPartlyInfinite && VE.VVertexA.Equals(VE.VVertexB)) { MinuteEdges.Add(VE); // prevent rounding errors from expanding to holes foreach (VoronoiEdge VE2 in VG.Edges) { if (VE2.VVertexA.Equals(VE.VVertexA)) { VE2.VVertexA = VE.VVertexA; } if (VE2.VVertexB.Equals(VE.VVertexA)) { VE2.VVertexB = VE.VVertexA; } } } } foreach (VoronoiEdge VE in MinuteEdges) { VG.Edges.Remove(VE); } return(VG); }
public static VNode ProcessCircleEvent(VCircleEvent e, VNode Root, VoronoiGraph VG, double ys, out VDataNode[] CircleCheckList) { VDataNode a, b, c; VEdgeNode eu, eo; b = e.NodeN; a = VNode.LeftDataNode(b); c = VNode.RightDataNode(b); if (a == null || b.Parent == null || c == null || !a.DataPoint.Equals(e.NodeL.DataPoint) || !c.DataPoint.Equals(e.NodeR.DataPoint)) { CircleCheckList = new VDataNode[] {}; return(Root); // Abbruch da sich der Graph verändert hat } eu = (VEdgeNode)b.Parent; CircleCheckList = new VDataNode[] { a, c }; //1. Create the new Vertex Vector VNew = new Vector(e.Center[0], e.Center[1]); // VNew[0] = Fortune.ParabolicCut(a.DataPoint[0],a.DataPoint[1],c.DataPoint[0],c.DataPoint[1],ys); // VNew[1] = (ys + a.DataPoint[1])/2 - 1/(2*(ys-a.DataPoint[1]))*(VNew[0]-a.DataPoint[0])*(VNew[0]-a.DataPoint[0]); VG.Vertices.Add(VNew); //2. Find out if a or c are in a distand part of the tree (the other is then b's sibling) and assign the new vertex if (eu.Left == b) // c is sibling { eo = VNode.EdgeToRightDataNode(a); // replace eu by eu's Right eu.Parent.Replace(eu, eu.Right); } else // a is sibling { eo = VNode.EdgeToRightDataNode(b); // replace eu by eu's Left eu.Parent.Replace(eu, eu.Left); } eu.Edge.AddVertex(VNew); // ///////////////////// uncertain // if(eo==eu) // return Root; // ///////////////////// //complete & cleanup eo eo.Edge.AddVertex(VNew); //while(eo.Edge.VVertexB == Fortune.VVUnkown) //{ // eo.Flipped = !eo.Flipped; // eo.Edge.AddVertex(Fortune.VVInfinite); //} //if(eo.Flipped) //{ // Vector T = eo.Edge.LeftData; // eo.Edge.LeftData = eo.Edge.RightData; // eo.Edge.RightData = T; //} //2. Replace eo by new Edge VoronoiEdge VE = new VoronoiEdge(); VE.LeftData = a.DataPoint; VE.RightData = c.DataPoint; VE.AddVertex(VNew); VG.Edges.Add(VE); VEdgeNode VEN = new VEdgeNode(VE, false); VEN.Left = eo.Left; VEN.Right = eo.Right; if (eo.Parent == null) { return(VEN); } eo.Parent.Replace(eo, VEN); return(Root); }