/// <summary> /// Describes whether this instance solve position constraints /// </summary> /// <param name="baumgarte">The baumgarte</param> /// <returns>The bool</returns> public bool SolvePositionConstraints(float baumgarte) { float minSeparation = 0.0f; for (int i = 0; i < ConstraintCount; ++i) { ContactConstraint c = Constraints[i]; Body bodyA = c.BodyA; Body bodyB = c.BodyB; float invMassA = bodyA.Mass * bodyA.InvMass; float invIa = bodyA.Mass * bodyA.InvI; float invMassB = bodyB.Mass * bodyB.InvMass; float invIb = bodyB.Mass * bodyB.InvI; SPositionSolverManifold.Initialize(c); Vec2 normal = SPositionSolverManifold.Normal; // Solver normal constraints for (int j = 0; j < c.PointCount; ++j) { Vec2 point = SPositionSolverManifold.Points[j]; float separation = SPositionSolverManifold.Separations[j]; Vec2 rA = point - bodyA.Sweep.C; Vec2 rB = point - bodyB.Sweep.C; // Track max constraint error. minSeparation = Math.Min(minSeparation, separation); // Prevent large corrections and allow slop. float clamp = baumgarte * Math.Clamp(separation + Settings.LinearSlop, -Settings.MaxLinearCorrection, 0.0f); // Compute normal impulse float impulse = -c.Points[j].EqualizedMass * clamp; Vec2 p = impulse * normal; bodyA.Sweep.C -= invMassA * p; bodyA.Sweep.A -= invIa * Vec2.Cross(rA, p); bodyA.SynchronizeTransform(); bodyB.Sweep.C += invMassB * p; bodyB.Sweep.A += invIb * Vec2.Cross(rB, p); bodyB.SynchronizeTransform(); } } // We can't expect minSpeparation >= -Settings.LinearSlop because we don't // push the separation above -Settings.LinearSlop. return(minSeparation >= -1.5f * Settings.LinearSlop); }
/// <summary> /// Solves the step /// </summary> /// <param name="step">The step</param> /// <param name="gravity">The gravity</param> /// <param name="allowSleep">The allow sleep</param> public void Solve(TimeStep step, Vec2 gravity, bool allowSleep) { // Integrate velocities and apply damping. for (int i = 0; i < BodyCount; ++i) { Body b = Bodies[i]; if (b.IsStatic()) { continue; } // Integrate velocities. b.LinearVelocity += step.Dt * (gravity + b.InvMass * b.Force); b.AngularVelocity += step.Dt * b.InvI * b.Torque; // Reset forces. b.Force.Set(0.0f, 0.0f); b.Torque = 0.0f; // Apply damping. // ODE: dv/dt + c * v = 0 // Solution: v(t) = v0 * exp(-c * t) // Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt) // v2 = exp(-c * dt) * v1 // Taylor expansion: // v2 = (1.0f - c * dt) * v1 b.LinearVelocity *= Math.Clamp(1.0f - step.Dt * b.LinearDamping, 0.0f, 1.0f); b.AngularVelocity *= Math.Clamp(1.0f - step.Dt * b.AngularDamping, 0.0f, 1.0f); } ContactSolver contactSolver = new ContactSolver(step, Contacts, ContactCount); // Initialize velocity constraints. contactSolver.InitVelocityConstraints(step); for (int i = 0; i < JointCount; ++i) { Joints[i].InitVelocityConstraints(step); } // Solve velocity constraints. for (int i = 0; i < step.VelocityIterations; ++i) { for (int j = 0; j < JointCount; ++j) { Joints[j].SolveVelocityConstraints(step); } contactSolver.SolveVelocityConstraints(); } // Post-solve (store impulses for warm starting). contactSolver.FinalizeVelocityConstraints(); // Integrate positions. for (int i = 0; i < BodyCount; ++i) { Body b = Bodies[i]; if (b.IsStatic()) { continue; } // Check for large velocities. Vec2 translation = step.Dt * b.LinearVelocity; if (Vec2.Dot(translation, translation) > Settings.MaxTranslationSquared) { translation.Normalize(); b.LinearVelocity = Settings.MaxTranslation * step.InvDt * translation; } float rotation = step.Dt * b.AngularVelocity; if (rotation * rotation > Settings.MaxRotationSquared) { if (rotation < 0.0) { b.AngularVelocity = -step.InvDt * Settings.MaxRotation; } else { b.AngularVelocity = step.InvDt * Settings.MaxRotation; } } // Store positions for continuous collision. b.Sweep.C0 = b.Sweep.C; b.Sweep.A0 = b.Sweep.A; // Integrate b.Sweep.C += step.Dt * b.LinearVelocity; b.Sweep.A += step.Dt * b.AngularVelocity; // Compute new transform b.SynchronizeTransform(); // Note: shapes are synchronized later. } // Iterate over constraints. for (int i = 0; i < step.PositionIterations; ++i) { bool contactsOkay = contactSolver.SolvePositionConstraints(Settings.ContactBaumgarte); bool jointsOkay = true; for (int j = 0; j < JointCount; ++j) { bool jointOkay = Joints[j].SolvePositionConstraints(Settings.ContactBaumgarte); jointsOkay = jointsOkay && jointOkay; } if (contactsOkay && jointsOkay) { // Exit early if the position errors are small. break; } } Report(contactSolver.Constraints); if (allowSleep) { float minSleepTime = Settings.FltMax; #if !TARGET_FLOAT32_IS_FIXED float linTolSqr = Settings.LinearSleepTolerance * Settings.LinearSleepTolerance; float angTolSqr = Settings.AngularSleepTolerance * Settings.AngularSleepTolerance; #endif for (int i = 0; i < BodyCount; ++i) { Body b = Bodies[i]; if (b.InvMass == 0.0f) { continue; } if ((b.Flags & BodyFlags.AllowSleep) == 0) { b.SleepTime = 0.0f; minSleepTime = 0.0f; } if ((b.Flags & BodyFlags.AllowSleep) == 0 || #if TARGET_FLOAT32_IS_FIXED Common.Math.Abs(b._angularVelocity) > Settings.AngularSleepTolerance || Common.Math.Abs(b._linearVelocity.X) > Settings.LinearSleepTolerance || Common.Math.Abs(b._linearVelocity.Y) > Settings.LinearSleepTolerance) #else b.AngularVelocity *b.AngularVelocity > angTolSqr || Vec2.Dot(b.LinearVelocity, b.LinearVelocity) > linTolSqr) #endif { b.SleepTime = 0.0f; minSleepTime = 0.0f; } else { b.SleepTime += step.Dt; minSleepTime = Math.Min(minSleepTime, b.SleepTime); } }
/// <summary> /// Solves the velocity constraints /// </summary> public void SolveVelocityConstraints() { for (int i = 0; i < ConstraintCount; ++i) { ContactConstraint c = Constraints[i]; Body bodyA = c.BodyA; Body bodyB = c.BodyB; float wA = bodyA.AngularVelocity; float wB = bodyB.AngularVelocity; Vec2 vA = bodyA.LinearVelocity; Vec2 vB = bodyB.LinearVelocity; float invMassA = bodyA.InvMass; float invIa = bodyA.InvI; float invMassB = bodyB.InvMass; float invIb = bodyB.InvI; Vec2 normal = c.Normal; Vec2 tangent = Vec2.Cross(normal, 1.0f); float friction = c.Friction; Box2DxDebug.Assert(c.PointCount == 1 || c.PointCount == 2); unsafe { fixed(ContactConstraintPoint *pointsPtr = c.Points) { // Solve tangent constraints for (int j = 0; j < c.PointCount; ++j) { ContactConstraintPoint *ccp = &pointsPtr[j]; // Relative velocity at contact Vec2 dv = vB + Vec2.Cross(wB, ccp->Rb) - vA - Vec2.Cross(wA, ccp->Ra); // Compute tangent force float vt = Vec2.Dot(dv, tangent); float lambda = ccp->TangentMass * -vt; // b2Clamp the accumulated force float maxFriction = friction * ccp->NormalImpulse; float newImpulse = Math.Clamp(ccp->TangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - ccp->TangentImpulse; // Apply contact impulse Vec2 p = lambda * tangent; vA -= invMassA * p; wA -= invIa * Vec2.Cross(ccp->Ra, p); vB += invMassB * p; wB += invIb * Vec2.Cross(ccp->Rb, p); ccp->TangentImpulse = newImpulse; } // Solve normal constraints if (c.PointCount == 1) { ContactConstraintPoint ccp = c.Points[0]; // Relative velocity at contact Vec2 dv = vB + Vec2.Cross(wB, ccp.Rb) - vA - Vec2.Cross(wA, ccp.Ra); // Compute normal impulse float vn = Vec2.Dot(dv, normal); float lambda = -ccp.NormalMass * (vn - ccp.VelocityBias); // Clamp the accumulated impulse float newImpulse = Math.Max(ccp.NormalImpulse + lambda, 0.0f); lambda = newImpulse - ccp.NormalImpulse; // Apply contact impulse Vec2 p = lambda * normal; vA -= invMassA * p; wA -= invIa * Vec2.Cross(ccp.Ra, p); vB += invMassB * p; wB += invIb * Vec2.Cross(ccp.Rb, p); ccp.NormalImpulse = newImpulse; } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn_0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = x' - a // // Plug into above equation: // // vn = A * x + b // = A * (x' - a) + b // = A * x' + b - A * a // = A * x' + b' // b' = b - A * a; ContactConstraintPoint *cp1 = &pointsPtr[0]; ContactConstraintPoint *cp2 = &pointsPtr[1]; Vec2 a = new Vec2(cp1->NormalImpulse, cp2->NormalImpulse); Box2DxDebug.Assert(a.X >= 0.0f && a.Y >= 0.0f); // Relative velocity at contact Vec2 dv1 = vB + Vec2.Cross(wB, cp1->Rb) - vA - Vec2.Cross(wA, cp1->Ra); Vec2 dv2 = vB + Vec2.Cross(wB, cp2->Rb) - vA - Vec2.Cross(wA, cp2->Ra); // Compute normal velocity float vn1 = Vec2.Dot(dv1, normal); float vn2 = Vec2.Dot(dv2, normal); Vec2 b; b.X = vn1 - cp1->VelocityBias; b.Y = vn2 - cp2->VelocityBias; b -= Math.Mul(c.K, a); //const float k_errorTol = 1e-3f; //B2_NOT_USED(k_errorTol); for (;;) { // // Case 1: vn = 0 // // 0 = A * x' + b' // // Solve for x': // // x' = - inv(A) * b' // Vec2 x = -Math.Mul(c.NormalMass, b); if (x.X >= 0.0f && x.Y >= 0.0f) { // Resubstitute for the incremental impulse Vec2 d = x - a; // Apply incremental impulse Vec2 p1 = d.X * normal; Vec2 p2 = d.Y * normal; vA -= invMassA * (p1 + p2); wA -= invIa * (Vec2.Cross(cp1->Ra, p1) + Vec2.Cross(cp2->Ra, p2)); vB += invMassB * (p1 + p2); wB += invIb * (Vec2.Cross(cp1->Rb, p1) + Vec2.Cross(cp2->Rb, p2)); // Accumulate cp1->NormalImpulse = x.X; cp2->NormalImpulse = x.Y; #if DEBUG_SOLVER // Postconditions dv1 = vB + Vec2.Cross(wB, cp1->RB) - vA - Vec2.Cross(wA, cp1->RA); dv2 = vB + Vec2.Cross(wB, cp2->RB) - vA - Vec2.Cross(wA, cp2->RA); // Compute normal velocity vn1 = Vec2.Dot(dv1, normal); vn2 = Vec2.Dot(dv2, normal); Box2DXDebug.Assert(Common.Math.Abs(vn1 - cp1.VelocityBias) < k_errorTol); Box2DXDebug.Assert(Common.Math.Abs(vn2 - cp2.VelocityBias) < k_errorTol); #endif break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1' + a12 * 0 + b1' // vn2 = a21 * x1' + a22 * 0 + b2' // x.X = -cp1->NormalMass * b.X; x.Y = 0.0f; /* * vn1 = 0.0f; */ vn2 = c.K.Col1.Y * x.X + b.Y; if (x.X >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse Vec2 d = x - a; // Apply incremental impulse Vec2 p1 = d.X * normal; Vec2 p2 = d.Y * normal; vA -= invMassA * (p1 + p2); wA -= invIa * (Vec2.Cross(cp1->Ra, p1) + Vec2.Cross(cp2->Ra, p2)); vB += invMassB * (p1 + p2); wB += invIb * (Vec2.Cross(cp1->Rb, p1) + Vec2.Cross(cp2->Rb, p2)); // Accumulate cp1->NormalImpulse = x.X; cp2->NormalImpulse = x.Y; #if DEBUG_SOLVER // Postconditions dv1 = vB + Vec2.Cross(wB, cp1->RB) - vA - Vec2.Cross(wA, cp1->RA); // Compute normal velocity vn1 = Vec2.Dot(dv1, normal); Box2DXDebug.Assert(Common.Math.Abs(vn1 - cp1.VelocityBias) < k_errorTol); #endif break; } // // Case 3: w2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2' + b1' // 0 = a21 * 0 + a22 * x2' + b2' // x.X = 0.0f; x.Y = -cp2->NormalMass * b.Y; vn1 = c.K.Col2.X * x.Y + b.X; /* * vn2 = 0.0f; */ if (x.Y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse Vec2 d = x - a; // Apply incremental impulse Vec2 p1 = d.X * normal; Vec2 p2 = d.Y * normal; vA -= invMassA * (p1 + p2); wA -= invIa * (Vec2.Cross(cp1->Ra, p1) + Vec2.Cross(cp2->Ra, p2)); vB += invMassB * (p1 + p2); wB += invIb * (Vec2.Cross(cp1->Rb, p1) + Vec2.Cross(cp2->Rb, p2)); // Accumulate cp1->NormalImpulse = x.X; cp2->NormalImpulse = x.Y; #if DEBUG_SOLVER // Postconditions dv2 = vB + Vec2.Cross(wB, cp2->RB) - vA - Vec2.Cross(wA, cp2->RA); // Compute normal velocity vn2 = Vec2.Dot(dv2, normal); Box2DXDebug.Assert(Common.Math.Abs(vn2 - cp2.VelocityBias) < k_errorTol); #endif break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.X = 0.0f; x.Y = 0.0f; vn1 = b.X; vn2 = b.Y; if (vn1 >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse Vec2 d = x - a; // Apply incremental impulse Vec2 p1 = d.X * normal; Vec2 p2 = d.Y * normal; vA -= invMassA * (p1 + p2); wA -= invIa * (Vec2.Cross(cp1->Ra, p1) + Vec2.Cross(cp2->Ra, p2)); vB += invMassB * (p1 + p2); wB += invIb * (Vec2.Cross(cp1->Rb, p1) + Vec2.Cross(cp2->Rb, p2)); // Accumulate cp1->NormalImpulse = x.X; cp2->NormalImpulse = x.Y; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } bodyA.LinearVelocity = vA; bodyA.AngularVelocity = wA; bodyB.LinearVelocity = vB; bodyB.AngularVelocity = wB; } } } }