static void Main(string[] args) { // Read the Excel worksheet into a DataTable DataTable table = new ExcelReader("examples.xls").GetWorksheet("Sheet1"); // Convert the DataTable to input and output vectors double[][] inputs = table.ToArray<double>("X", "Y"); int[] outputs = table.Columns["G"].ToArray<int>(); // Plot the data ScatterplotBox.Show("Yin-Yang", inputs, outputs).Hold(); naiveBayes(inputs, outputs); decisionTree(inputs, outputs); linearSvm(inputs, outputs); kernelSvm(inputs, outputs); logistic(inputs, outputs); network(inputs, outputs); multilabelsvm(); sequenceclassification(); resilientgradienthiddenlearning(); }
static void Main(string[] args) { DataTable tableAttHp= new ExcelReader("HsAttHp.xlsx").GetWorksheet("Sheet1"); double[][] tableAttHpMatrix = tableAttHp.ToArray<double>(); DataTable tableCost = new ExcelReader("HsCost.xlsx").GetWorksheet("Sheet1"); double[] tableCostMatrix = tableCost.Columns[0].ToArray<double>(); //double[,] scores = Accord.Statistics.Tools.ZScores(tableAttHpMatrix); //double[,] centered = Accord.Statistics.Tools.Center(tableAttHpMatrix); //double[,] standard = Accord.Statistics.Tools.Standardize(tableAttHpMatrix); //foreach (double i in scores ) { Console.WriteLine(i); } //Console.ReadKey(); //foreach (double i in centered) { Console.WriteLine(i); } //Console.ReadKey(); //foreach (double i in standard) { Console.WriteLine(i); } // Plot the data //ScatterplotBox.Show("Hs", tableAttHpMatrix, tableCostMatrix).Hold(); var target = new MultipleLinearRegression(2, true); double error = target.Regress(tableAttHpMatrix, tableCostMatrix); double a = target.Coefficients[0]; // a = 0 double b = target.Coefficients[1]; // b = 0 double c = target.Coefficients[2]; // c = 1 Console.WriteLine(a + " " + b + " " + c); Console.ReadKey(); double[] inputs = { 2005, 2006, 2007, 2008, 2009,2010,2011 }; double[] outputs = { 12,19,29,37,45,23,33 }; // Create a new simple linear regression SimpleLinearRegression regression = new SimpleLinearRegression(); // Compute the linear regression regression.Regress(inputs, outputs); // Compute the output for a given input. The double y = regression.Compute(85); // The answer will be 28.088 // We can also extract the slope and the intercept term // for the line. Those will be -0.26 and 50.5, respectively. double s = regression.Slope; double cut = regression.Intercept; Console.WriteLine(s+"x+"+ cut); Console.ReadKey(); }