/// <summary> /// Compute a RecursiveTree built by using maximal independent sets /// </summary> /// <param name="inputGraph">The input graph</param> /// <param name="timer">A RUNNING! timer to keep track of the total time this computation takes</param> /// <param name="maxTimeAllowed">The total time the computation is allowed to take. If this time is exceeded, all remaining nodes are placed in a single line on top of the tree with independent sets computed thus far</param> /// <returns>A RecursiveTree built by using maximal independent sets</returns> public static RecursiveTree <Node> TreeFromIndependentSets(Node[] inputGraph, Stopwatch timer, double maxTimeAllowed) { List <Node> graph = new List <Node>(inputGraph); List <Node> independentSet = CalculateMaximal(graph); Node[] oldNodes = new Node[graph.Count]; List <Node>[] neighboursPreviousLevel = new List <Node> [graph.Count]; for (int i = 0; i < neighboursPreviousLevel.Length; i++) { neighboursPreviousLevel[i] = new List <Node>(); oldNodes[graph[i].Number - 1] = graph[i]; } RecursiveTree <Node>[] treesFromNodes = new RecursiveTree <Node> [graph.Count]; List <Node> newNodes = graph; List <Node> oldNewNodes; do { oldNewNodes = new List <Node>(newNodes); // The independent set contains nodes from the last layer (1 layer down in the tree) // Nodes in this specific layer; each layer has its own nodes. These nodes are not in the independent set newNodes = new List <Node>(newNodes.Count - independentSet.Count); // Dictionary from nodenumber to node in the current layer Node[] fromNumber = new Node[graph.Count]; // Compute the subtrees for the nodes in the independent set and compute the new layer of nodes ComputeSubtreesAndNextLayer(oldNewNodes, oldNodes, independentSet, newNodes, fromNumber, treesFromNodes, neighboursPreviousLevel); // Compute the new connections for the next layer int totalEdges = 0; ComputeNewConnections(newNodes, oldNodes, fromNumber, independentSet, neighboursPreviousLevel, ref totalEdges); // If the remaining nodes form a clique or we are taking too long, put the remaining nodes in a line and return if (newNodes.Count * (newNodes.Count - 1) / 2 == totalEdges || timer.Elapsed.TotalSeconds >= maxTimeAllowed) { RecursiveTree <Node> cliqueTreeLeaf = CreateLine(newNodes); foreach (RecursiveTree <Node> tree in treesFromNodes) { if (tree != null && tree.Parent == null) { cliqueTreeLeaf.AddChild(tree); tree.Parent = cliqueTreeLeaf; } } return(cliqueTreeLeaf.Root); } // Calculate new independent set for next iteration independentSet = CalculateMaximal(newNodes); } while (newNodes.Count > 0); return(treesFromNodes[oldNewNodes[0].Number - 1]); }
/// <summary> /// Creates a subtree in the form of a single line from a list of nodes /// </summary> /// <param name="nodes">The nodes to be in the subtree</param> /// <returns>The leaf of the subtree with the nodes in a single line</returns> private static RecursiveTree <Node> CreateLine(List <Node> nodes) { RecursiveTree <Node> leaf = new RecursiveTree <Node>(nodes[0]); RecursiveTree <Node> child = leaf; for (int i = 1; i < nodes.Count; i++) { RecursiveTree <Node> node = new RecursiveTree <Node>(nodes[i]); node.AddChild(child); child.Parent = node; child = node; } return(leaf); }
/// <summary> /// Creates a subtree in the form of a single line from a list of nodes /// </summary> /// <param name="nodes">The nodes to be in the subtree</param> /// <returns>The root of a subtree with the nodes in a single line</returns> private RecursiveTree <Node> CreateLine(List <Node> nodes) { RecursiveTree <Node> root = new RecursiveTree <Node>(nodes[0]); RecursiveTree <Node> parent = root; for (int i = 1; i < nodes.Count; i++) { RecursiveTree <Node> node = new RecursiveTree <Node>(nodes[i]) { Parent = parent }; parent.AddChild(node); parent = node; } return(root); }
/// <summary> /// Recursive method used for computing the heuristic tree, computes the tree for a subset of nodes /// </summary> /// <param name="nodes">All nodes in the entire tree</param> /// <param name="ancestors">The list of ancestors for the current subtree</param> /// <param name="left">The INCLUSIVE index in nodes where the current subtree starts</param> /// <param name="right">The EXCLUSIVE index in nodes where the current subtree ends</param> /// <param name="timer">A RUNNING! timer to keep track of how long this computation is allowed to take</param> /// <param name="maxTimeAllowed">The maximum time this computation is allowed to take</param> /// <param name="fast">Whether heuristics should be updated during the computation. Fast means they are not updated</param> /// <returns>The resulting heuristic tree for this subset of nodes</returns> private RecursiveTree <Node> RecGetHeuristicTree(Node[] nodes, HashSet <Node> ancestors, int left, int right, Stopwatch timer, double maxTimeAllowed, bool fast) // Left inclusive, right exclusive { // Compute the array for this subset of nodes subArray = nodes.Skip(left).Take(right - left); // If the time is up, return the nodes in a single line with for this subtree if (timer.Elapsed.TotalSeconds >= maxTimeAllowed) { return(CreateLine(subArray.ToList())); } // If the new tree has only one node, return this node if (left - right == 1) { return(new RecursiveTree <Node>(nodes[left])); } // Select a node as the root of this subtree based on the heuristics of the nodes in this subgraph and compute the connected component when this node is removed // These components are the subtrees that are children of the selected node Node selectedNode = GetHeuristicNode(subArray, fast); RecursiveTree <Node> newTree = new RecursiveTree <Node>(selectedNode); ComputeConnectedComponents(nodes, ancestors, selectedNode, left, right); Tuple <int, int>[] borders = ComputeNewSubgraphBorders(nodes, left); // For each of the new subtrees, do a recursive call to this method to compute it for (int i = 0; i < borders.Length; i++) { RecursiveTree <Node> ChildTree = RecGetHeuristicTree(nodes, ancestors, borders[i].Item1, borders[i].Item2, timer, maxTimeAllowed, fast); ChildTree.Parent = newTree; newTree.AddChild(ChildTree); } // Remove the selected node from the ancestors so the possible other subtrees of the parent of this subtree do not accidentaly use it. // We do this to avoid having to copy the entire ancestors list for each recursive call ancestors.Remove(selectedNode); return(newTree); }
/// <summary> /// Create a RecursiveTree with all nodes in a single line (each tree has exactly one child, except for the single leaf) /// </summary> /// <returns>The root of a RecursiveTree in a line</returns> public static RecursiveTree <Node> LineRecursiveTree(ref List <RecursiveTree <Node> > allRecTreeNodes, Node[] allNodes) { allRecTreeNodes = new List <RecursiveTree <Node> >(); int numberOfNodes = allNodes.Length; // Create the root of the line RecursiveTree <Node> recTree = new RecursiveTree <Node>(allNodes[0]); allRecTreeNodes.Add(recTree); // Loop through all other nodes and create trees for them with the correct parent and cildren references RecursiveTree <Node> child = recTree; for (int i = 1; i < numberOfNodes; i++) { Node newNode = allNodes[i]; RecursiveTree <Node> parent = new RecursiveTree <Node>(newNode); child.Parent = parent; parent.AddChild(child); child = parent; allRecTreeNodes.Add(parent); } return(recTree); }
/// <summary> /// Operation that adds a child to a node /// </summary> /// <param name="node">The node to which the child is added</param> /// <param name="child">The child to be added</param> public AddChildOperation(RecursiveTree <Node> node, RecursiveTree <Node> child) { this.node = node; this.child = child; node.AddChild(child); }
/// <summary> /// Recursive method for calculating the best heuristic tree /// </summary> /// <param name="bestFoundSolution">The optimal solution thus far from this level of the tree, used for early stopping</param> /// <param name="nodes">A list of all nodes in this subtree</param> /// <param name="ancestors">The list of all ancestors of the current subtree</param> /// <param name="checkedSubsets">A dictionary with checked subsets, used for memoization</param> /// <returns>The optimal exact tree for the list of input nodes</returns> private RecursiveTree <Node> RecGetBestTree(int bestFoundSolution, List <Node> nodes, HashSet <Node> ancestors, Dictionary <string, RecursiveTree <Node> > checkedSubsets) { // If the currently best found solution is smaller than the list of ancestors here, we cannot possibly improve it. Thus, we return an empty tree if (bestFoundSolution < ancestors.Count + 1) { return(null); } // Check if we have already computed a subtree for this set of nodes, if so, return that tree string asBits = NodeSubsetRepresentation(nodes); if (checkedSubsets.ContainsKey(asBits) && checkedSubsets[asBits] != null) { RecursiveTree <Node> computedTree = new RecursiveTree <Node>(checkedSubsets[asBits]); return(computedTree); } // Sort the nodes on their remaining degree value (descending) and recursively compute the best trees HashSet <Node> nodesAsHash = new HashSet <Node>(nodes); nodes = nodes.OrderByDescending(n => n.RemainingDegree(nodesAsHash)).ToList(); RecursiveTree <Node> bestTree = null; foreach (Node selectedNode in nodes) { RecursiveTree <Node> newTree = new RecursiveTree <Node>(selectedNode); HashSet <Node> beenList = new HashSet <Node>(ancestors) { selectedNode }; bool broken = false; foreach (Node n in nodes) { // Find the connected component this node is in if (beenList.Contains(n)) { continue; } List <Node> connectedNodes = DFS.All(n, (nn) => { return(true); }, beenList); HashSet <Node> newHash = new HashSet <Node>(ancestors) { selectedNode }; // Compute the best possible subtree for this connected component RecursiveTree <Node> ChildTree = RecGetBestTree(bestFoundSolution, connectedNodes, newHash, checkedSubsets); if (ChildTree == null) { // If the resulting tree is null, it is not a viable solution broken = true; break; } ChildTree.Parent = newTree; newTree.AddChild(ChildTree); } // If we found a viable solution, update the best found solution thus far if (!broken) { int newDepth = newTree.Depth; if (newDepth + ancestors.Count < bestFoundSolution) { bestFoundSolution = newDepth + ancestors.Count; bestTree = newTree; } } } // Save the tree in the memoization dictionary and return it checkedSubsets[asBits] = bestTree; return(bestTree); }