static void Main(string[] args) { double[][] inputs = { new double[] { 0, 0 }, new double[] { 0, 1 }, new double[] { 1, 0 }, new double[] { 1, 1 } }; double[] targets = { 0, 1, 1, 0 }; double error = 1; int epoch = 0; ActivationFunction f = new SigmoidFunction(); Layer layer1 = new Layer(2, 2, f); Layer layer2 = new Layer(1, 2, f); Network network = new Network(new Layer[] { layer1, layer2 }); LearningStrategy learning = new BackpropagationLearning(network, 0.25); while (error > 0.01) { error = learning.RunEpoch(inputs, targets); epoch++; Console.WriteLine("Iteration {0} error: {1}", epoch, error); } Console.WriteLine("Training complete after {0} epochs using the Backpropagation training regime.", epoch); Console.WriteLine("Testing"); network.Update(new double[] { 0, 0 }); Console.WriteLine("{0}", network.Output[0]); network.Update(new double[] { 0, 1 }); Console.WriteLine("{0}", network.Output[0]); network.Update(new double[] { 1, 0 }); Console.WriteLine("{0}", network.Output[0]); network.Update(new double[] { 1, 1 }); Console.WriteLine("{0}", network.Output[0]); }
public void SparseAutoencoderComputeDeltas_ReturnsDeltas() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); double[][] input = new double[][] { new double[] { 0.5, 0.6 } }; double[][] target = new double[][] { new double[] { 1 } }; double[][] expected = new double[][] { new double[] { -0.0108698887658827, -0.0105735765912387 }, new double[] { -0.0875168367272141 } }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = -0.01; layers[0][1].Bias = -0.02; layers[1][0].Bias = -0.05; sparseAutoencoder.UpdateCachedActivations(input); double[][] actual = sparseAutoencoder.ComputeDeltas(0, target[0]); Assert.AreEqual(expected[0][0], actual[0][0], 0.0001, "Invalid deltas"); Assert.AreEqual(expected[0][1], actual[0][1], 0.0001, "Invalid deltas"); Assert.AreEqual(expected[1][0], actual[1][0], 0.0001, "Invalid deltas"); }
static void Main(string[] args) { double[][] inputs = { new double[] { 0, 0 }, new double[] { 0, 1 }, new double[] { 1, 0 }, new double[] { 1, 1 } }; double[] targets = { 0, 1, 1, 1 }; double error = 1; int epoch = 0; ActivationFunction function = new SigmoidFunction(); Neuron neuron = new Neuron(2, function); LearningStrategy learning = new DeltaRuleLearning(neuron, 0.75); while (error > 0.01) { error = learning.RunEpoch(inputs, targets); epoch++; Console.WriteLine("Iteration {0} error: {1}", epoch, error); } Console.WriteLine("Training complete after {0} epochs using the Delta Rule learning regime.", epoch); Console.WriteLine("Testing"); neuron.Update(new double[] { 0, 0 }); Console.WriteLine("{0}", neuron.Output); neuron.Update(new double[] { 0, 1 }); Console.WriteLine("{0}", neuron.Output); neuron.Update(new double[] { 1, 0 }); Console.WriteLine("{0}", neuron.Output); neuron.Update(new double[] { 1, 1 }); Console.WriteLine("{0}", neuron.Output); }
public void SigmoidOutput_ReturnsValueOfSigmoid() { ActivationFunction sigmoidFunction = new SigmoidFunction(); double input1 = -3; double input2 = 0; double input3 = 2; double expected1 = 0.0474258731776; double expected2 = 0.5; double expected3 = 0.880797077978; double actual1 = sigmoidFunction.Output(input1); double actual2 = sigmoidFunction.Output(input2); double actual3 = sigmoidFunction.Output(input3); Assert.AreEqual(expected1, actual1, 0.0001, "Invalid sigmoid output"); Assert.AreEqual(expected2, actual2, 0.0001, "Invalid sigmoid output"); Assert.AreEqual(expected3, actual3, 0.0001, "Invalid sigmoid output"); }
public void SigmoidDerivativeOutput_ReturnsSigmoidDerivativeGivenSigmoidOutput() { ActivationFunction sigmoidFunction = new SigmoidFunction(); double input1 = 0.0474258731776; double input2 = 0.5; double input3 = 0.880797077978; double expected1 = 0.04517665973; double expected2 = 0.25; double expected3 = 0.1049935854; double actual1 = sigmoidFunction.OutputDerivative(input1); double actual2 = sigmoidFunction.OutputDerivative(input2); double actual3 = sigmoidFunction.OutputDerivative(input3); Assert.AreEqual(expected1, actual1, 0.0001, "Invalid sigmoid derivative output"); Assert.AreEqual(expected2, actual2, 0.0001, "Invalid sigmoid derivative output"); Assert.AreEqual(expected3, actual3, 0.0001, "Invalid sigmoid derivative output"); }
public void NeuronActivation_ReturnsNeuronActivation() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Neuron sigmoidNeuron = new Neuron(3, sigmoidFunction); double[] input = new double[] { 0.3, 0.2, 0.1 }; double expected = 0.05; sigmoidNeuron[0] = 0.1; sigmoidNeuron[1] = 0.2; sigmoidNeuron[2] = 0.3; sigmoidNeuron.Bias = -0.05; double actual = sigmoidNeuron.Activation(input); Assert.AreEqual(expected, actual, 0.0001, "Invalid neuron activation"); }
public void SigmoidDerivative_ReturnsSigmoidDerivative() { ActivationFunction sigmoidFunction = new SigmoidFunction(); double input1 = -3; double input2 = 0; double input3 = 2; double expected1 = 0.04517665973; double expected2 = 0.25; double expected3 = 0.1049935854; double actual1 = sigmoidFunction.Derivative(input1); double actual2 = sigmoidFunction.Derivative(input2); double actual3 = sigmoidFunction.Derivative(input3); Assert.AreEqual(expected1, actual1, 0.0001, "Invalid sigmoid derivative output"); Assert.AreEqual(expected2, actual2, 0.0001, "Invalid sigmoid derivative output"); Assert.AreEqual(expected3, actual3, 0.0001, "Invalid sigmoid derivative output"); }
public void NeuronUpdate_UpdatesOutputAndReturnsValue() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Neuron sigmoidNeuron = new Neuron(3, sigmoidFunction); double[] input = new double[] { 0.3, 0.2, 0.1 }; double expected = 0.512497396484; sigmoidNeuron[0] = 0.1; sigmoidNeuron[1] = 0.2; sigmoidNeuron[2] = 0.3; sigmoidNeuron.Bias = -0.05; double actual = sigmoidNeuron.Update(input); double neuronOutput = sigmoidNeuron.Output; Assert.AreEqual(expected, actual, 0.0001, "Invalid neuron output"); Assert.AreEqual(expected, neuronOutput, 0.0001, "Invalid neuron output"); }
public void SparseAutoencoderConstructor_InitialisesCache() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(4, 5, sigmoidFunction), new Layer(3, 4, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); int batchSize = sparseAutoencoder.BatchSize; double[][][] cachedActivations = sparseAutoencoder.CachedActivations; Assert.AreEqual(1, batchSize, 0, "Inalid batch size"); Assert.AreEqual(batchSize, cachedActivations.Length, 0, "Invalid activations cache size"); for (int i = 0; i < batchSize; i++) { Assert.AreEqual(network.LayerCount, cachedActivations[i].Length); for (int j = 0; j < network.LayerCount; j++) { Assert.AreEqual(network[j].NeuronCount, cachedActivations[i][j].Length); } } sparseAutoencoder = new SparseAutoencoderLearning(network, 32); batchSize = sparseAutoencoder.BatchSize; cachedActivations = sparseAutoencoder.CachedActivations; Assert.AreEqual(32, batchSize, 0, "Inalid batch size"); Assert.AreEqual(batchSize, cachedActivations.Length, 0, "Invalid activations cache size"); for (int i = 0; i < batchSize; i++) { Assert.AreEqual(network.LayerCount, cachedActivations[i].Length); for (int j = 0; j < network.LayerCount; j++) { Assert.AreEqual(network[j].NeuronCount, cachedActivations[i][j].Length); } } }
public void LayerUpdate_UpdatesAllNeurons() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer layer = new Layer(2, 2, sigmoidFunction); double[] input = new double[] { 0.5, 0.6 }; double[] expected = new double[] { 0.539914884556, 0.591458978433 }; layer[0][0] = 0.1; layer[0][1] = 0.2; layer[1][0] = 0.3; layer[1][1] = 0.4; layer[0].Bias = -0.01; layer[1].Bias = -0.02; double[] actual = layer.Update(input); double[] layerOutput = layer.Output; Assert.AreEqual(expected[0], actual[0], 0.0001, "Invalid layer output"); Assert.AreEqual(expected[0], layerOutput[0], 0.0001, "Invalid layer output"); Assert.AreEqual(expected[1], actual[1], 0.0001, "Invalid layer output"); Assert.AreEqual(expected[1], layerOutput[1], 0.0001, "Invalid layer output"); }
public void NetworkUpdate_UpdatesAllLayers() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); double[] input = new double[] { 0.5, 0.6 }; double[] expected = new double[] { 0.626138674824 }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = -0.01; layers[0][1].Bias = -0.02; layers[1][0].Bias = -0.05; double[] actual = network.Update(input); double[] networkOutput = network.Output; Assert.AreEqual(expected[0], actual[0], 0.0001, "Invalid network output"); Assert.AreEqual(expected[0], networkOutput[0], 0.0001, "Invalid network output"); }
public void SparseAutoencoder_BatchGradientChecking() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network, 3); double[][] input = new double[][] { new double[] { 0.5, 0.6 }, new double[] { 0.1, 0.2 }, new double[] { 0.3, 0.3 } }; double[][] target = new double[][] { new double[] { 1 }, new double[] { 0 }, new double[] { 0.5 } }; double[][][] gradientWeights = new double[][][] { new double[][] { new double[] { 0, 0 }, new double[] { 0, 0 } }, new double[][] { new double[] { 0, 0 } } }; double[][] gradientBias = new double[][] { new double[] { 0, 0 }, new double[] { 0 } }; double tmp; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = 0.01; layers[0][1].Bias = 0.02; layers[1][0].Bias = 0.05; for (int i = 0; i < network.LayerCount; i++) { for (int j = 0; j < network[i].NeuronCount; j++) { for (int k = 0; k < network[i][j].InputCount; k++) { tmp = network[i][j][k]; network[i][j][k] = tmp + 0.0001; for (int l = 0; l < input.Length; l++) { gradientWeights[i][j][k] += ((double)1 / input.Length) * 0.5 * Math.Pow(network.Update(input[l])[0] - target[l][0], 2); } network[i][j][k] = tmp - 0.0001; for (int l = 0; l < input.Length; l++) { gradientWeights[i][j][k] -= ((double)1 / input.Length) * 0.5 * Math.Pow(network.Update(input[l])[0] - target[l][0], 2); } network[i][j][k] = tmp; gradientWeights[i][j][k] = gradientWeights[i][j][k] / 0.0002; } tmp = network[i][j].Bias; network[i][j].Bias = tmp + 0.0001; for(int l = 0; l < input.Length; l++) { gradientBias[i][j] += ((double)1 / input.Length) * 0.5 * Math.Pow(network.Update(input[l])[0] - target[l][0], 2); } network[i][j].Bias = tmp - 0.0001; for (int l = 0; l < input.Length; l++) { gradientBias[i][j] -= ((double)1 / input.Length) * 0.5 * Math.Pow(network.Update(input[l])[0] - target[l][0], 2); } network[i][j].Bias = tmp; gradientBias[i][j] = gradientBias[i][j] / 0.0002; } } Tuple<double[][][], double[][]> result = sparseAutoencoder.ComputeBatchPartialDerivatives(input, target); double[][][] partialDerivativesWeights = result.Item1; double[][] partialDerivativesBias = result.Item2; Assert.AreEqual(gradientWeights[0][0][0], ((double)1 / input.Length) * partialDerivativesWeights[0][0][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientWeights[0][0][1], ((double)1 / input.Length) * partialDerivativesWeights[0][0][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientWeights[0][1][0], ((double)1 / input.Length) * partialDerivativesWeights[0][1][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientWeights[0][1][1], ((double)1 / input.Length) * partialDerivativesWeights[0][1][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientWeights[1][0][0], ((double)1 / input.Length) * partialDerivativesWeights[1][0][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientWeights[1][0][1], ((double)1 / input.Length) * partialDerivativesWeights[1][0][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientBias[0][0], ((double)1 / input.Length) * partialDerivativesBias[0][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientBias[0][1], ((double)1 / input.Length) * partialDerivativesBias[0][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradientBias[1][0], ((double)1 / input.Length) * partialDerivativesBias[1][0], 0.0001, "Gradient checking failed"); }
public void SparseAutoencoderOutputLayerDeltas_ReturnsDeltas() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); double[] input = new double[] { 0.5, 0.6 }; double[] target = new double[] { 1 }; double[] expected = new double[] { -0.0875168367272141 }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = -0.01; layers[0][1].Bias = -0.02; layers[1][0].Bias = -0.05; network.Update(input); double[] actual = sparseAutoencoder.OutputLayerDeltas(target); Assert.AreEqual(expected[0], actual[0], 0.0001, "Invalid output layer delta"); }
public void SparseAutoencoder_GradientChecking() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); double[][] input = new double[][] { new double[] { 0.5, 0.6 } }; double[][] target = new double[][] { new double[] { 1 } }; double[][][] gradient = new double[][][] { new double[][] { new double[] { 0, 0 }, new double[] { 0, 0 } }, new double[][] { new double[] { 0, 0 } } }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = 0.01; layers[0][1].Bias = 0.02; layers[1][0].Bias = 0.05; for (int i = 0; i < network.LayerCount; i++) { for (int j = 0; j < network[i].NeuronCount; j++) { for (int k = 0; k < network[i][j].InputCount; k++) { double tmp = network[i][j][k]; network[i][j][k] = tmp + 0.0001; gradient[i][j][k] += Math.Pow(network.Update(input[0])[0] - target[0][0], 2); network[i][j][k] = tmp - 0.0001; gradient[i][j][k] -= Math.Pow(network.Update(input[0])[0] - target[0][0], 2); network[i][j][k] = tmp; gradient[i][j][k] = 0.5 * gradient[i][j][k] / 0.0002; } } } sparseAutoencoder.UpdateCachedActivations(input); double[][] deltas = sparseAutoencoder.ComputeDeltas(0, target[0]); double[][][] partialDerivatives = sparseAutoencoder.ComputePartialDerivatives(0, deltas, input[0]); Assert.AreEqual(gradient[0][0][0], partialDerivatives[0][0][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradient[0][0][1], partialDerivatives[0][0][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradient[0][1][0], partialDerivatives[0][1][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradient[0][1][1], partialDerivatives[0][1][1], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradient[1][0][0], partialDerivatives[1][0][0], 0.0001, "Gradient checking failed"); Assert.AreEqual(gradient[1][0][1], partialDerivatives[1][0][1], 0.0001, "Gradient checking failed"); }
public void SparseAutoencoderUpdateCachedActivations_UpdatesCache() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); double[][] input = new double[][] { new double[] { 0.5, 0.6 } }; double[][][] expected = new double[][][] { new double[][] { new double[] { 0.539914884556, 0.591458978433 }, new double[] { 0.626138674824 } }, new double[][] { new double[] { 0.547357618143, 0.608259030747 }, new double[] { 0.628971793540 } } }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = -0.01; layers[0][1].Bias = -0.02; layers[1][0].Bias = -0.05; double[][][] cachedActivations = sparseAutoencoder.UpdateCachedActivations(input); Assert.AreEqual(expected[0][0][0], cachedActivations[0][0][0], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[0][0][1], cachedActivations[0][0][1], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[0][1][0], cachedActivations[0][1][0], 0.0001, "Invalid cached activation value"); input = new double[][] { new double[] { 0.5, 0.6 }, new double[] { 0.6, 0.7 } }; sparseAutoencoder = new SparseAutoencoderLearning(network, 2); cachedActivations = sparseAutoencoder.UpdateCachedActivations(input); Assert.AreEqual(expected[0][0][0], cachedActivations[0][0][0], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[0][0][1], cachedActivations[0][0][1], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[0][1][0], cachedActivations[0][1][0], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[1][0][0], cachedActivations[1][0][0], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[1][0][1], cachedActivations[1][0][1], 0.0001, "Invalid cached activation value"); Assert.AreEqual(expected[1][1][0], cachedActivations[1][1][0], 0.0001, "Invalid cached activation value"); }
public void SparseAutoencoderUpdateCachedActivations_ThrowsArgument() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network, 2); double[][] input = new double[][] { new double[] { 0.5, 0.6 } }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = 0.01; layers[0][1].Bias = 0.02; layers[1][0].Bias = 0.05; double[][][] cachedActivations = sparseAutoencoder.UpdateCachedActivations(input); }
public void SparseAutoencoderPartialDerivatives_ReturnsDerivatives() { ActivationFunction sigmoidFunction = new SigmoidFunction(); Layer[] layers = new Layer[] { new Layer(2, 2, sigmoidFunction), new Layer(1, 2, sigmoidFunction) }; Network network = new Network(layers); SparseAutoencoderLearning sparseAutoencoder = new SparseAutoencoderLearning(network); double[][] input = new double[][] { new double[] { 0.5, 0.6 } }; double[][] target = new double[][] { new double[] { 1 } }; double[][][] expected = new double[][][] { new double[][] { new double[] { -0.0054349443829414, -0.0065219332595296 }, new double[] { -0.0052867882956194, -0.0063441459547432 } }, new double[][] { new double[] { -0.0472516427982801, -0.0517626188463657 } } }; layers[0][0][0] = 0.1; layers[0][0][1] = 0.2; layers[0][1][0] = 0.3; layers[0][1][1] = 0.4; layers[1][0][0] = 0.5; layers[1][0][1] = 0.5; layers[0][0].Bias = -0.01; layers[0][1].Bias = -0.02; layers[1][0].Bias = -0.05; sparseAutoencoder.UpdateCachedActivations(input); double[][] deltas = sparseAutoencoder.ComputeDeltas(0, target[0]); double[][][] partialDerivatives = sparseAutoencoder.ComputePartialDerivatives(0, deltas, input[0]); Assert.AreEqual(expected[0][0][0], partialDerivatives[0][0][0], 0.0001, "Invalid partial derivative"); Assert.AreEqual(expected[0][0][1], partialDerivatives[0][0][1], 0.0001, "Invalid partial derivative"); Assert.AreEqual(expected[0][1][0], partialDerivatives[0][1][0], 0.0001, "Invalid partial derivative"); Assert.AreEqual(expected[0][1][1], partialDerivatives[0][1][1], 0.0001, "Invalid partial derivative"); Assert.AreEqual(expected[1][0][0], partialDerivatives[1][0][0], 0.0001, "Invalid partial derivative"); Assert.AreEqual(expected[1][0][1], partialDerivatives[1][0][1], 0.0001, "Invalid partial derivative"); }